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I. In electrostatic drift wave theory, the generation of large-scale structures with additional
symmetry, so called zonal flows and streamers, is well-known and active field of studies.
These structures are spontaneously generated and sustained by small-scale drift type
fluctuations via Reynolds stress using the free energy stored in density and temperature
gradients. The mechanism behind can be attributed to the well-known inverse cascade
guaranteed in quasi-two-dimensional fluids by the conservation of energy and enstrophy.

The present work investigates the generation of large-scale magnetic fields in magnetic
electron drift mode (MEDM) turbulence via modulation instability. The underlying modes
are of interest in, e.g., laser fusion experiments, where they are thought to be responsible for
the very strong self-generated magnetic fields which have been observed since the 1970s.
These experiments showed clearly that strong magnetic fields can be generated even in
unmagnetized plasmas. The modulation instability arises in the presence of a small-scale
pump wave and its sidebands. The large-scale filed generation occurs via triad interactions,
i.e. with k+k'+q~0, and is intrinsically nonlocal interaction in k space, since
k|~ |k'|>>|a|. Here k and k'denote the small-scale and qthe large-scale wave vector.
Thus, if one assumes the presence of a pump wave with wave vector k, two sidebands with
wave vectors k, =k £qwill interact with the original pump wave and, as we will show,
these interactions can lead to a growth of large-scale fields. This is the modulation instability.
Elucidating of these interactions and expression for the resulting increment is the main goal
of the present studies. Finally, the evolution of nonlinearly interacting MEDM is illustrated
by a simulation study of the model equations for the different set of parameters.

I1. We consider a nonuniform unmagnetized plasma, and fluctuations on a space scale much
smaller than that of the equilibrium density and temperature inhomogeneities, which are
taken to be in the x-direction. The time scale is faster than the ion and slower than the
electron plasma frequency, and hence we consider an unpolarized electron fluid and
immobile ions. We confine our analysis to two-dimensional solutions where all quantities are
independent on z. The temperature and density gradients of the fluctuations are in general not
collinear, and this generates a vorticity in the electron fluid. The consequent motion generates
a perpendicular magnetic field, B(x,y)z say, which actually plays role of a stream function.
Then, the simplest energy and momentum equations along with Faraday’s and Ampere’s laws
can be reduced to a pair of coupled non-linear equations for B and perturbed electron
temperature T
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scales of the equilibrium density and temperature inhomogeneities. The Jacobian, or Poisson

bracket, {a,b} is defined as (VaxVb)-z. The system (1) resembles models describing

various low frequency electrostatic modes in magnetized plasmas, as well as shallow water

model. Linear analysis for small perturbations, (B,T)~exp(—iat+ik-r) vyields

1+ k222
solution for af <0 and the growth rate vanishes for modes withk, =0. However, linear
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theory can only predict strong magnetic fields (exponential growth) and is not capable of
describing the wave-wave interactions needed for the generation of large scale magnetic
fields. Here we will consider «, to be real, i.e. af >0, so that we can concentrate on the

nonlinear interactions.

I11. To describe the evolution of the coupled system (wave turbulence + large scale plasma
flows) we represent the perturbed magnetic field B as a sum of a large-scale flow B quantity

and a small-scale turbulent part B. The large-scale plasma flow varies on longer time scale
compared to the small-scale turbulent fluctuations, so we may employ a multiple scale
expansion, thus assuming that there is a sufficient spectral gap separating large scale and
small scale motions.

Since zonal magnetic fields, ¢(q,0,0)/magnetic streamers,q(0,q,0)and small-scale
turbulence interact via nonlocal triad interactions q+k + k'~ 0, some sidebands to the pump
wave have to be involved in the interaction as well, satisfying k'=k+q. The model
representation of four interacting waves is done via Fourier expansion, i.e. for large scale
fields we use B(r,t) = B, exp(iqr —iQt), and the small-scale turbulence is modeled as the

sum of the pump wave and its two sidebands, B-= B,+B,+B_, where
B, (r,t) =B, exp(ikr —igt)+c.cis the pump wave and B, =B,, exp(ik,r — e,,t)+c.c.are
the upper/lower sidebands. The conditions defining the sidebands are @, =@, £Q, and

k,=k=*q. A similar representation has been chosen for the electron temperature T.

Averaging (1) over fast/small scales, we obtain the evolution equations for the large-scale
flow:
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B=-4"—{B,T}. (2b)
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where 0/0T denotes the partial derivative with respect to the slow time variable. The
nonlinear terms on the RHS of Eqgs.(1) for small and (2) for the large-scales are determined
using the resonance principle and the triad interactions. For zonal fields, the LHS of EQgs.(2)
is proportional to exp(iqr), so that there are four possibilities for the RHS of Eq.(2) in order

to be in resonance: exp(ik,r) x exp(—ikr),exp(—ikr)xexp (ik,r),exp(-ik_r)xexp(ikr), and
exp (ikr) xexp(—ik_r), since these are the four possibilities to decompose q. It follows from

these considerations that for determining the evolution of zonal fields/streamers, one has to
find the expressions of the amplitudes of the sidebands B, ,T,,,B, , and T, . These can be

k+ Tkt

found from Egs.(1) with the same resonance arguments as before. Taking now into account
the Fourier representation for large/small-scale fields in Egs.(2) together with the expressions
for sidebands yields the dispersion relation of the zonal magnetic fields/magnetic streamers as
a function of the pump wave amplitude and small-scale eigenvalues. Anticipating a frequency
of the form Q=qv, +iy, v,is the group velocity of MEDM, (the imaginary part has, of

course, to be added for instability to be possible) results in the increment of the modulation
instability:
a) Zonal magnetic fields, g(q,00),v; =ov, /oK,

1+k222
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b) Magnetic streamers (the instability takes place in the limit k4 >>1), q(0,q,0)
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It is seen from these expressions that in order to have modulation instability, the system must
satisfy (v; /a)k) <0, which is merely the well-known Lighthill criterion.

1'Y. A simulation study of the Eqgs. (1) for different sets of parameters has been performed.
The simulation code is based on a pseudospectral method to resolve derivatives in space with
periodic boundary conditions, with random fluctuations as initial conditions.
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Figure 1: Linearly unstable regime. Top panels: Magnetic field and temperature fluctuations
Bottom panels: Zonon and streamer energy spectra of the magnetic field.

In the unstable regime (af <0), displayed in Fig. 1, we could observe magnetic field
generation and the formation of large scale magnetic structures, accompanied by small-scale
turbulence visible in the temperature fluctuations. The energy spectra are hon-Kolmogorov
and concentrated to streamers at small wave numbers.
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Figure 2: Linearly stable, small amplitude regime. Top panels: Magnetic field and temperature fluctuations
Bottom panels: Zonon and streamer energy spectra of the magnetic field.

In the linearly stable regime (o > 0) in Fig. 2, we observe small-scale turbulence and the
formation of zero-frequency zonal flows (zonons). The energy spectra are strongly
anisotropic with magnetic wave energy concentrated at zonons.

Y. The properties of MEDM turbulence are studied and a mechanism of generation of large-
scale magnetic fields is investigated. It is shown that in the presence of a small-scale pump
wave with a wave vector k, an upper and lower sidebands will interact with the pump wave
due to nonlocal triad interactions with k+k'+q~0, where the wave vectors of the
sidebands are k'=k=+q, and the condition |q|<<|k| is satisfied. These interactions are
elucidated, an expression for the resulting increments of zonal fields and magnetic streamers
is calculated, and a condition similar to the Lighthill criterion for instability is found. The
obtained analytical results are illustrated by numerical studies of the model equations which
exhibit the excitation of the large-scale magnetic structures by the MEDM turbulence.



