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I. In electrostatic drift wave theory, the generation of large-scale structures with additional 
symmetry, so called zonal flows and streamers, is well-known and active field of studies. 
These structures are spontaneously generated and sustained by small-scale drift type 
fluctuations via Reynolds stress using the free energy stored in density and temperature 
gradients. The mechanism behind can be attributed to the well-known inverse cascade 
guaranteed in quasi-two-dimensional fluids by the conservation of energy and enstrophy.  
   The present work investigates the generation of large-scale magnetic fields in magnetic 
electron drift mode (MEDM) turbulence via modulation instability. The underlying modes 
are of interest in, e.g., laser fusion experiments, where they are thought to be responsible for 
the very strong self-generated magnetic fields which have been observed since the 1970s. 
These experiments showed clearly that strong magnetic fields can be generated even in 
unmagnetized plasmas. The modulation instability arises in the presence of a small-scale 
pump wave and its sidebands. The large-scale filed generation occurs via triad interactions, 
i.e. with , and is intrinsically nonlocal interaction in k space, since '+ +k k q ∼ 0

' >>k k∼

q

q . Here  and denote the small-scale and the large-scale wave vector. 
Thus, if one assumes the presence of a pump wave with wave vector k , two sidebands with 
wave vectors k k will interact with the original pump wave and, as we will show, 
these interactions can lead to a growth of large-scale fields. This is the modulation instability. 
Elucidating of these interactions and expression for the resulting increment is the main goal 
of the present studies. Finally, the evolution of nonlinearly interacting MEDM is illustrated 
by a simulation study of the model equations for the different set of parameters. 
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II. We consider a nonuniform unmagnetized plasma, and fluctuations on a space scale much 
smaller than that of the equilibrium density and temperature inhomogeneities, which are 
taken to be in the x-direction. The time scale is faster than the ion and slower than the 
electron plasma frequency, and hence we consider an unpolarized electron fluid and 
immobile ions. We confine our analysis to two-dimensional solutions where all quantities are 
independent on z. The temperature and density gradients of the fluctuations are in general not 
collinear, and this generates a vorticity in the electron fluid. The consequent motion generates 
a perpendicular magnetic field, B(x,y)z say, which actually plays role of a stream function. 
Then, the simplest energy and momentum equations along with Faraday’s and Ampere’s laws 
can be reduced to a pair of coupled non-linear equations for B and perturbed electron 
temperature T  
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scales of the equilibrium density and temperature inhomogeneities. The Jacobian, or Poisson 
bracket,  is defined as { ba, } )( z⋅∇×∇ ba . The system (1) resembles models describing 
various low frequency electrostatic modes in magnetized plasmas, as well as shallow water 
model. Linear analysis for small perturbations, ( ) ( )rk ⋅+−∼ itiTB ωexp,  yields 
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1 2 . It is clear that there is a purely growing 

solution for 0αβ <  and the growth rate vanishes for modes with 0yk = . However, linear 

theory can only predict strong magnetic fields (exponential growth) and is not capable of 
describing the wave-wave interactions needed for the generation of large scale magnetic 
fields. Here we will consider kω  to be real, i.e. 0αβ > , so that we can concentrate on the 
nonlinear interactions. 
  
III. To describe the evolution of the coupled system (wave turbulence + large scale plasma 
flows) we represent the perturbed magnetic field B as a sum of a large-scale flow B  quantity 
and a small-scale turbulent part . The large-scale plasma flow varies on longer time scale 
compared to the small-scale turbulent fluctuations, so we may employ a multiple scale 
expansion, thus assuming that there is a sufficient spectral gap separating large scale and 
small scale motions.  

B~

    Since zonal magnetic fields, ( ),0,0qq /magnetic streamers, ( )0, ,0qq and small-scale 

turbulence interact via nonlocal triad interactions ' 0+ +q k k ∼ , some sidebands to the pump 
wave have to be involved in the interaction as well, satisfying . The model 
representation of four interacting waves is done via Fourier expansion, i.e. for large scale 
fields we use

' = ±k k q

( ) ( ), expqB t B i i t= − Ωqrr , and the small-scale turbulence is modeled as the 

sum of the pump wave and its two sidebands, 0B B B B+ −= + +� , where 

( ) ( )0 , expk k .B t B i i t cω= −r kr c+ is the pump wave and ( )exp . .k kB B i± ±= k r t c±− c+ω± are 

the upper/lower sidebands. The conditions defining the sidebands are k kω ω≡± ±Ω , and 

. A similar representation has been chosen for the electron temperature T. 
Averaging (1) over fast/small scales, we obtain the evolution equations for the large-scale 
flow: 
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where T∂ ∂ denotes the partial derivative with respect to the slow time variable. The 
nonlinear terms on the RHS of Eqs.(1) for small and (2) for the large-scales are determined 
using the resonance principle and the triad interactions. For zonal fields, the LHS of Eqs.(2) 
is proportional to ( )exp iqr

(
, so that there are four possibilities for the RHS of Eq.(2) in order 

to be in resonance: ) ( )exp ik+r exp ikr× − , ( ) ( )exp ikr exp ik r+− × , ( ) ( )exp expik r ikr−− × , and 

( ) ( )exp expikr × −ik r− , since these are the four possibilities to decompose . It follows from 

these considerations that for determining the evolution of zonal fields/streamers, one has to 
find the expressions of the amplitudes of the sidebands 

q

kB + , kT + , kB∗
− , and . These can be 

found from Eqs.(1) with the same resonance arguments as before. Taking now into account 
the Fourier representation for large/small-scale fields in Eqs.(2) together with the expressions 
for sidebands yields the dispersion relation of the zonal magnetic fields/magnetic streamers as 
a function of the pump wave amplitude and small-scale eigenvalues. Anticipating a frequency 
of the form 

kT ∗
−

gqv iγΩ = + , gv is the group velocity of MEDM, (the imaginary part has, of 

course, to be added for instability to be possible) results in the increment of the modulation 
instability: 

a) Zonal magnetic fields, ,( ),00qq g g xv v k′ = ∂ ∂  
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b) Magnetic streamers (the instability takes place in the limit 1λ >> ),  ( )0, ,0qq
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It is seen from these expressions that in order to have modulation instability, the system must 
satisfy ( )/g kv ω′ < 0 , which is merely the well-known Lighthill criterion.  

IY. A simulation study of the Eqs. (1) for different sets of parameters has been performed. 
The simulation code is based on a pseudospectral method to resolve derivatives in space with 
periodic boundary conditions, with random fluctuations as initial conditions.  
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Figure 1: Linearly unstable regime. Top panels: Magnetic field and temperature fluctuations  
Bottom panels:  Zonon and streamer energy spectra of the magnetic field. 

 
In the unstable regime ( 0αβ < ), displayed in Fig. 1, we could observe magnetic field 
generation and the formation of large scale magnetic structures, accompanied by small-scale 
turbulence visible in the temperature fluctuations. The energy spectra are non-Kolmogorov 
and concentrated to streamers at small wave numbers.  

        

 
Figure 2: Linearly stable, small amplitude regime. Top panels: Magnetic field and temperature fluctuations 
Bottom panels:  Zonon and streamer energy spectra of the magnetic field. 
 

In the linearly stable regime ( 0αβ > ) in Fig. 2, we observe small-scale turbulence and the 
formation of zero-frequency zonal flows (zonons). The energy spectra are strongly 
anisotropic with magnetic wave energy concentrated at zonons. 

Y. The properties of MEDM turbulence are studied and a mechanism of generation of large-
scale magnetic fields is investigated. It is shown that in the presence of a small-scale pump 
wave with a wave vector , an upper and lower sidebands will interact with the pump wave 
due to nonlocal triad interactions with 

k
0′+ +k k q ∼ , where the wave vectors of the 

sidebands are , and the condition ′ = ±k k q <<q k  is satisfied. These interactions are 
elucidated, an expression for the resulting increments of zonal fields and magnetic streamers 
is calculated, and a condition similar to the Lighthill criterion for instability is found.   The 
obtained analytical results are illustrated by numerical studies of the model equations which 
exhibit the excitation of the large-scale magnetic structures by the MEDM turbulence.  
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