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The plasma wake field (PWF) excitation [1] is one of the efficient mechanisms to generate, in
a plasma, ultra-intense electric and magnetic fields. To produce these fields, a relativistic elec-
tron/positron beam is launched into the plasma. Due to the very strong nonlinear and collective
beam-plasma interaction, the beam becomes the driver of a large amplitude plasma wave that
follows the beam with almost its own speed (plasma wake) and carries out both longitudinal
and transverse electric fields (plasma wake fields). If the beam length is much greater than the
plasma wavelength (long beam limit), the entire beam experiences the effects of the wake fields
that itself has produced (self interaction).

We study the self interaction of an electron/positron beam travelling in a magnetoactive, col-
lisionless, cold plasma in the overdense regime, i.e., ny >> n,, (np and n;, being the unperturbed
plasma and beam densities, respectively). We assume that: a strong constant and uniform external mag-
netic field acts along the z-axis, By = B€,; the electron/positron beam is travelling along the z-axis, i.e.
v, = Bcé, (B ~ 1); the ions are at rest to form a background of positive charge. Moreover, we consider a
fluid model of the beam-plasma system, characterized by the electron fluid velocity, u(r,7), the electron
plasma and beam number densities, n(r,z) and p,(r,t), respectively, the electron plasma and the beam
current densities, —enu and Bgpj,cé€,, respectively, where ¢ = —e and g = e for electrons and positrons,
respectively. We ignore the longitudinal beam dynamics and concentrate our investigation on the trans-
verse effects only. We express the total electric and magnetic fields of the beam-plasma system in terms
of the four-potential (A, ¢) and introduce small deviations of all the quantities with respect to the initial
staten=ngp,u=0,A =Ao(r) = (Bg xr) /2, ¢ =0; then we write u = &,u;,+u; |, A=A¢g+&A;+A,
¢ = ¢1. Furthermore, we assume the long beam limit, i.e. 92/9&? < wﬁ /c? = klz, (@, being the electron
plasma frequency), which under suitable boundary conditions implies that A | < Aj; and |uy | < uy,.
Consequently, after linearizing the Lorentz-Maxwell system of equations, we obtain the equation for the
dimensionless wake potential U,, driven by the beam density, i.e., (V3 —&?) U,, = k*py,/noY, where
Wyy is the upper hybrid frequency, Kk = wg /@ync?, V| is the transverse part of the gradient operator,
and U,, = (A1, — ¢1) /moyc? with Ay, = A,(r,€) and ¢ = ¢ (r ,&) the perturbations of both the

longitudinal component of the vector potential and the electric potential, respectively. Here, r | is the
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transverse position vector, & = z — Bct ~ z— ct plays the role of time-like variable, m( and 7y, are the rest
mass and the unperturbed relativistic gamma factor of the single particle in the electron/positron beam,
respectively. To provide a self consistent description of the transverse electron/positron beam dynamics,
we have to consider the total force acting on the single particle of the beam, that accounts for the trans-
verse gradient of U,, as well as the effects produced by the external magnetic field By. To this end, we
describe the transverse beam dynamics by means of the Thermal Wave Model (TWM) [2, 3].

TWM provides an effective description of the charged-particle beam dynamics in terms of a complex
function, say ¥, called beam wave function (BWF). The transverse spatio-temporal evolution of the BWF
is given by i€d¥/dE = A (x|, —ieV |, &)Y, where, for normalized ¥, p,(r &) = (N/o,)|¥(r, &)
(N and o, being the total number of particles and the beam length, respectively) [2, 3], 7 (r,p,, &) is
the effective Hamiltonian describing the perturbed transverse motion of a single particle of the beam, and
€ the transverse beam emittance. Provided that the longitudinal dynamics is ignored, i.e. p = €,mgYyc +

p; .. it is easily seen that, # = AH/Hy = (H — Hy)/Hy is the relative first-order perturbation of the

single electron/positron Hamiltonian H (r,p,§) = c\/(p - gA)2 + m%c2 +q¢, where Hy = moypc? is the
initial unperturbed total energy of the single particle of the beam. Consequently, the above equations for

BWF and U,, can be cast as the following Zakharov system of equations, viz.,
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where we have put W(r , 0,&) = exp [im (¢ — k& /2)] W (r 1, &) with m integer and K = (@./270¢)? =
(qBO / 2m0y()c2)2 = (ke/ 2)2. This system governs the self consistent spatio temporal evolution of the
PWEF self-interaction of the electron/positron beam. In principle, once eq.(2) is solved for U,,, we get the
functional U = U [|l[/m|2] that makes eq. (1) the generalized nonlinear Schrddinger equation (NLSE).
Note that, due to the helicity phase factor exp [im (¢ —k.&/2)] for m # 0 the BWF describes vortices
states associated with the orbital angular momentum of the beam particles in the external magnetic field
(m plays the role of vortex charge). Based on the pair of egs. (1) and (2), an investigation, both analytical
and numerical, has been carried out, taking into account the diverse limiting cases. Hereafter, and in Ref.
[4], we give a summary of the maim results.

First of all, in the linear limit, i.e. U = U [|y|?] 2 0 (the beam is travelling along By and the self
interaction is assumed negligible), for arbitrary integer m, the pair of egs. (1) and (2) reduces to a lin-
ear Schrodinger equation that admits solutions in the form of Laguerre-Gauss modes, say W), ,(r1,§)
(p is an arbitrary integer), whose transverse size, 0, (), is proportional to the one associated with
the purely Gaussian mode (m = p = 0), say o(£). The latter satisfies the following envelope equation:
d’c/d&? + Ko — €% /03 = 0. For a long enough region along z, it describes the typical sausage-like

transverse beam size modulations (betatron oscillations), preserving the collapse (focusing to a single
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point). Fig. 1 shows the density plot for |l//1,,,m|2 in the normalized plane (x/0o, y/o) for some combina-
tions of p and m. For a given m, the number of rings increases as p increases. When m = 0, the structure
of the density plots is always constituted by a central core plus p rings, whilst for m # 0, the density plots

are associated with the diverse states of vortices.
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Figure 1: Left: Density plots for ¥, ,|* in the normalized plane (x/ o, y/ o) for some combinations of
p and m. Right: qualitative representation of the BWF phase for different values of the vortex charge m

when p = 0.

When the self interaction is not negligible, one can suitably investigate two limiting cases.
(1). If the transverse beam size is much greater than the plasma wavelength, i.e. k,6 > 1, the system (1)

and (2) reduces to the 2D Gross-Pitaevskii equation, i.e.,

0, e1 a ( &wm> N

_ ry _
ary 0:10%

e m-€
e— = —— — -
3§ 21’1_87]_

5 1 ) 202
|Wm‘ lI/m‘|'<K”J_+ >V/m-
2 Zri

In Ref.[4] we carry out a numerical analysis of this sort of NLSE, showing the existence of vortices,
nonlinear coherent states (2D solitons) and beam halos. here, from the virial equation associated to this

NLSE, we find the following envelope equation:

d*c? /dE* + 4K o2 = A,
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where o, = 1e? [{° [|awm JorL P+ (m2/r?) yl,/m\z] ridry —(AN/ oY) & | Win [* rrdr . + (K /2) G2

12 .
| /2 is the transverse

is constant of motion, i.e. d,/d& = 0, and o, = [2%[5" rl|l,llm(rj_,€)’2rj_ dr|
beam size. Note that the interplay between the positive and the negative terms in the definition of <7,
can make this quantity positive, negative or zero. If <7, > 0, in correspondence of the initial condi-
tions 69 = 6,4(0), and oy = (d0,/dE)z_, the envelope equation describes stable oscillations in oy,
with frequency 2v/K, in the range 0 < %662 + %K Gg < 4, whilst 6, would reach zero in a finite time
in the range 0 < %, < %G(’)z + %K Gg. If 7, < 0, always o,, would reach zero in a finite time. The
latter cases would correspond to a collapse instability. However, as o, reaches very small values, the
condition k,0,, > 1 is no longer satisfied and the collapse does not take place. It is interesting to de-
scribe the self-interaction of an electron/positron beam that enters a thin plasma slab (plasma lens) of
length [ at § = 0 where, as initial conditions, is assumed that 6, = 0 and the BWF is purely Gaussian,
y(r,,0) = exp[—r2 /203]//T0y. Provided thatv/K! < 1, the self-interaction is very short, namely the
the BWF remains almost unchanged except for the appearance of a chirping phase factor, that accounts
for a strong change in the particle momentum distributions in the transverse plane (kick approximation),
viz.,y(r 1) ~ y(ry,0)explirl /2ep(l) +i¢(I)], where p(&) and ¢ (&) are the curvature radius of the

wavefront and a homogeneous phase at location &, respectively, such that, as & — 0, p — oo and ¢ — 0.

At the lens exit (§ = [), the transverse beam size is 6 (I) ~ \/ 0§ +2 (e — Kog) 1> (< being the con-
stant of motion corresponding to the Gaussian beam). Consequently, under the condition % — K Gg <0,
the beam is focussed and out of the lens it reaches a minimum spot size that is greater than zero, accord-
ing to the envelope equation in the vacuum (i.e., no plasma and K = 0), viz., d>c/d&? — €% /c® = 0. We
have weak focusing (strong focusing) if the above condition is satisfied for positive (negative) values of
.

(ii). If k,0 < 1, egs. (1) and (2) reduces to a nonlocal NLS equation whose aberrationless (i.e. Gaus-
sian) approximate solution leads to the envelope equation d’>c/d&? + Ko +1 /o —€2/03 = 0, where
n= (2e2a)§N /mOYO(D(z/HGz)- It admits the self-equilibrium solution O'e/q =1\/—u+ \/W Oy, Where
Opg = gl/? /K 1/4 is the corresponding self-equilibrium solution for the linear case 1 = 0 and p =
n/2eVK. It is easily seen that Gelq < Ogq in all the range 0 < p < oo, This implies that the term pro-

portional to 1/0 accounts for the squeezing of the beam.
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