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The plasma wake field (PWF) excitation [1] is one of the efficient mechanisms to generate, in

a plasma, ultra-intense electric and magnetic fields. To produce these fields, a relativistic elec-

tron/positron beam is launched into the plasma. Due to the very strong nonlinear and collective

beam-plasma interaction, the beam becomes the driver of a large amplitude plasma wave that

follows the beam with almost its own speed (plasma wake) and carries out both longitudinal

and transverse electric fields (plasma wake fields). If the beam length is much greater than the

plasma wavelength (long beam limit), the entire beam experiences the effects of the wake fields

that itself has produced (self interaction).

We study the self interaction of an electron/positron beam travelling in a magnetoactive, col-

lisionless, cold plasma in the overdense regime, i.e., n0 � nb, (n0 and nb being the unperturbed

plasma and beam densities, respectively). We assume that: a strong constant and uniform external mag-

netic field acts along the z-axis, B0 = B0êz; the electron/positron beam is travelling along the z-axis, i.e.

vb = βcêz (β ' 1); the ions are at rest to form a background of positive charge. Moreover, we consider a

fluid model of the beam-plasma system, characterized by the electron fluid velocity, u(r, t), the electron

plasma and beam number densities, n(r, t) and ρb(r, t), respectively, the electron plasma and the beam

current densities, −enu and βqρbc êz, respectively, where q =−e and q = e for electrons and positrons,

respectively. We ignore the longitudinal beam dynamics and concentrate our investigation on the trans-

verse effects only. We express the total electric and magnetic fields of the beam-plasma system in terms

of the four-potential (A,φ) and introduce small deviations of all the quantities with respect to the initial

state n = n0, u = 0, A = A0(r) = (B0× r)/2, φ = 0; then we write u = êzu1z +u1⊥, A = A0 + êzA1z +A1⊥,

φ = φ1. Furthermore, we assume the long beam limit, i.e. ∂ 2/∂ξ 2� ω2
p/c2 ≡ k2

p (ωp being the electron

plasma frequency), which under suitable boundary conditions implies that |A1⊥| � A1z and |u1⊥| � u1z.

Consequently, after linearizing the Lorentz-Maxwell system of equations, we obtain the equation for the

dimensionless wake potential Uw, driven by the beam density, i.e.,
(
∇2
⊥−κ2

)
Uw = κ2ρb/n0γ0, where

ωUH is the upper hybrid frequency, κ ≡ ω2
p/ωUHc2, ∇⊥ is the transverse part of the gradient operator,

and Uw = (A1z−φ1)/m0γ0c2 with A1z = A1z(r⊥,ξ ) and φ1 = φ1(r⊥,ξ ) the perturbations of both the

longitudinal component of the vector potential and the electric potential, respectively. Here, r⊥ is the
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transverse position vector, ξ = z−βct ' z−ct plays the role of time-like variable, m0 and γ0 are the rest

mass and the unperturbed relativistic gamma factor of the single particle in the electron/positron beam,

respectively. To provide a self consistent description of the transverse electron/positron beam dynamics,

we have to consider the total force acting on the single particle of the beam, that accounts for the trans-

verse gradient of Uw as well as the effects produced by the external magnetic field B0. To this end, we

describe the transverse beam dynamics by means of the Thermal Wave Model (TWM) [2, 3].

TWM provides an effective description of the charged-particle beam dynamics in terms of a complex

function, say Ψ, called beam wave function (BWF). The transverse spatio-temporal evolution of the BWF

is given by iε∂Ψ/∂ξ = H (r⊥,−iε∇⊥,ξ )Ψ, where, for normalized Ψ, ρb(r⊥,ξ ) = (N/σz)|Ψ(r⊥,ξ )|2

(N and σz being the total number of particles and the beam length, respectively) [2, 3], H (r⊥,p⊥,ξ ) is

the effective Hamiltonian describing the perturbed transverse motion of a single particle of the beam, and

ε the transverse beam emittance. Provided that the longitudinal dynamics is ignored, i.e. p = êzm0γ0c+

p1⊥, it is easily seen that, H = ∆H/H0 = (H −H0)/H0 is the relative first-order perturbation of the

single electron/positron Hamiltonian H(r,p,ξ ) = c
√

(p− q
c A)2 +m2

0c2 +qφ , where H0 = m0γ0c2 is the

initial unperturbed total energy of the single particle of the beam. Consequently, the above equations for

BWF and Uw can be cast as the following Zakharov system of equations, viz.,

iε
∂ψm

∂ξ
=−ε2

2
1

r⊥

∂
∂ r⊥

(
r⊥

∂ψm

∂ r⊥

)
+Uwψm +

(
1
2

Kr2
⊥+

m2ε2

2r2
⊥

)
ψm. (1)

1
r⊥

∂
∂ r⊥

(
r⊥

∂Uw

∂ r⊥

)
−κ2Uw = κ2 N

n0γ0σz
|ψm|2, (2)

where we have put Ψ(r⊥,ϕ,ξ ) = exp [im(ϕ− kcξ/2)]ψm(r⊥,ξ ) with m integer and K = (ωc/2γ0c)2 ≡
(
qB0/2m0γ0c2

)2 ≡ (kc/2)2. This system governs the self consistent spatio temporal evolution of the

PWF self-interaction of the electron/positron beam. In principle, once eq.(2) is solved for Uw, we get the

functional U = U
[
|ψm|2

]
that makes eq. (1) the generalized nonlinear Schrödinger equation (NLSE).

Note that, due to the helicity phase factor exp [im(ϕ− kcξ/2)] for m 6= 0 the BWF describes vortices

states associated with the orbital angular momentum of the beam particles in the external magnetic field

(m plays the role of vortex charge). Based on the pair of eqs. (1) and (2), an investigation, both analytical

and numerical, has been carried out, taking into account the diverse limiting cases. Hereafter, and in Ref.

[4], we give a summary of the maim results.

First of all, in the linear limit, i.e. U = U
[
|ψm|2

]
' 0 (the beam is travelling along B0 and the self

interaction is assumed negligible), for arbitrary integer m, the pair of eqs. (1) and (2) reduces to a lin-

ear Schrödinger equation that admits solutions in the form of Laguerre-Gauss modes, say ψp,m(r⊥,ξ )

(p is an arbitrary integer), whose transverse size, σp,m(ξ ), is proportional to the one associated with

the purely Gaussian mode (m = p = 0), say σ(ξ ). The latter satisfies the following envelope equation:

d2σ/dξ 2 + Kσ − ε2/σ3 = 0. For a long enough region along z, it describes the typical sausage-like

transverse beam size modulations (betatron oscillations), preserving the collapse (focusing to a single
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point). Fig. 1 shows the density plot for |ψp,m|2 in the normalized plane (x/σ , y/σ ) for some combina-

tions of p and m. For a given m, the number of rings increases as p increases. When m = 0, the structure

of the density plots is always constituted by a central core plus p rings, whilst for m 6= 0, the density plots

are associated with the diverse states of vortices.

Figure 1: Left: Density plots for |Ψm,p|2 in the normalized plane (x/σ , y/σ ) for some combinations of

p and m. Right: qualitative representation of the BWF phase for different values of the vortex charge m

when p = 0.

When the self interaction is not negligible, one can suitably investigate two limiting cases.

(i). If the transverse beam size is much greater than the plasma wavelength, i.e. kpσ � 1, the system (1)

and (2) reduces to the 2D Gross-Pitaevskii equation, i.e.,

iε
∂ψm

∂ξ
=−ε2

2
1

r⊥

∂
∂ r⊥

(
r⊥

∂ψm

∂ r⊥

)
− N

σzn0γ0
| ψm |2 ψm +

(
1
2

Kr2
⊥+

m2ε2

2r2
⊥

)
ψm .

In Ref.[4] we carry out a numerical analysis of this sort of NLSE, showing the existence of vortices,

nonlinear coherent states (2D solitons) and beam halos. here, from the virial equation associated to this

NLSE, we find the following envelope equation:

d2σ2
m/dξ 2 +4Kσ2

m = 4Am ,
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where Am ≡ πε2 ∫ ∞
0

[
|∂ψm/∂ r⊥|2 +(m2/r2

⊥) |ψm|2
]

r⊥dr⊥−(πN/σzn0γ0)
∫ ∞

0 |ψm |4 r⊥dr⊥+(K/2)σ2
m

is constant of motion, i.e. dAm/dξ = 0, and σm ≡
[
2π
∫ ∞

0 r2
⊥|ψm(r⊥,ξ )|2r⊥ dr⊥

]1/2 is the transverse

beam size. Note that the interplay between the positive and the negative terms in the definition of Am

can make this quantity positive, negative or zero. If Am > 0, in correspondence of the initial condi-

tions σ0 ≡ σm(0), and σ ′0 ≡ (dσm/dξ )ξ=0, the envelope equation describes stable oscillations in σm

with frequency 2
√

K, in the range 0 < 1
2 σ ′0 2 + 1

2 Kσ2
0 < Am, whilst σm would reach zero in a finite time

in the range 0 < Am < 1
2 σ ′0 2 + 1

2 Kσ2
0 . If Am < 0, always σm would reach zero in a finite time. The

latter cases would correspond to a collapse instability. However, as σm reaches very small values, the

condition kpσm � 1 is no longer satisfied and the collapse does not take place. It is interesting to de-

scribe the self-interaction of an electron/positron beam that enters a thin plasma slab (plasma lens) of

length l at ξ = 0 where, as initial conditions, is assumed that σ ′0 = 0 and the BWF is purely Gaussian,

ψ(r⊥,0) = exp[−r2
⊥/2σ2

0 ]/
√

πσ0. Provided that
√

Kl� 1, the self-interaction is very short, namely the

the BWF remains almost unchanged except for the appearance of a chirping phase factor, that accounts

for a strong change in the particle momentum distributions in the transverse plane (kick approximation),

viz.,ψ(r⊥, l) ' ψ(r⊥,0)exp[ir2
⊥/2ερ(l)+ iφ(l)], where ρ(ξ ) and φ(ξ ) are the curvature radius of the

wavefront and a homogeneous phase at location ξ , respectively, such that, as ξ → 0, ρ → ∞ and φ → 0.

At the lens exit (ξ = l), the transverse beam size is σ(l) '
√

σ2
0 +2

(
A0−Kσ2

0

)
l2 (A0 being the con-

stant of motion corresponding to the Gaussian beam). Consequently, under the condition A0−Kσ2
0 < 0,

the beam is focussed and out of the lens it reaches a minimum spot size that is greater than zero, accord-

ing to the envelope equation in the vacuum (i.e., no plasma and K = 0), viz., d2σ/dξ 2− ε2/σ3 = 0. We

have weak focusing (strong focusing) if the above condition is satisfied for positive (negative) values of

A0.

(ii). If kpσ � 1, eqs. (1) and (2) reduces to a nonlocal NLS equation whose aberrationless (i.e. Gaus-

sian) approximate solution leads to the envelope equation d2σ/dξ 2 + Kσ + η/σ − ε2/σ3 = 0, where

η =
(
2e2ω2

pN/m0γ0ω2
UHσz

)
. It admits the self-equilibrium solution σ ′eq =

√
−µ +

√
1+ µ2 σeq, where

σeq ≡ ε1/2/K1/4 is the corresponding self-equilibrium solution for the linear case η = 0 and µ =

η/2ε
√

K. It is easily seen that σ ′eq < σeq in all the range 0 ≤ µ < ∞. This implies that the term pro-

portional to 1/σ accounts for the squeezing of the beam.
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