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In this paper, we want to study, in a self consistent way, some nonlinear and collective trans-

verse effects due to the interaction of a relativistic electron/positron beam with a magnetoactive

plasma in overdense regime, i.e., n0 >> nb (n0 and nb being the unperturbed plasma and beam

densities, respectively). To this end, in the long beam limit, we consider the self-interaction that

is produced when a relativistic charged particle beam is travelling in the plasma exciting large

amplitude plasma waves, namely plasma wake field (PWF) excitation [1].

Hereafter, we refer to our paper [2] appearing in this proceedings, as well. According to

this paper, we assume that the plasma is collisionless and cold, with ions at rest forming a

uniform background of positive charge. Furthermore, a strong constant and uniform external

magnetic field is assumed to be acting along the z-axis, B0 = B0êz. We also assume that the

electron/positron beam is initially travelling along the direction of the magnetic field with a

velocity vb = βcêz (β ' 1). We consider a fluid model, consisting of Lorentz-Maxwell system

of equations for the beam-plasma system. From the perturbed Lorentz-Maxwell system, we

obtain an equation that governs the evolution of the plasma wake potential driven by the charged

particle beam density. On the other hand, by ignoring the longitudinal beam dynamics, we write

the equation that governs the spatio temporal evolution of the charged particle beam given by

the thermal wave model (TWM) [3, 4] (For details, see Ref.[2]). These pair of equations can

be cast as a quantumlike Zakharov system of equations which governs the self consistent spatio

temporal evolution of the PWF self-interaction of the electron/positron beam, viz.,
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where ωUH is the electron upper hybrid frequency and Ψ = Ψ(r⊥,ξ ) is the beam wave function (BWF),

so that its squared modulus is proportional to the beam density, i.e., ρb(r⊥,ξ ) = (N/σz) |Ψ(r⊥,ξ )|2,

where N and σz are the total number of particles and the beam length, respectively, K ≡ (ωc/2γ0c)2 ≡
(
qB0/2m0γ0c2

)2 ≡ (kc/2)2, ∇2
⊥ is the transverse part of the gradient operator, Uw = (A1z−φ1)/m0γ0c2

is the dimensionless wake potential with A1z = A1z(r⊥,ξ ) and φ1 = φ1(r⊥,ξ ) the longitudinal vector
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potential perturbation and electric potential perturbation, respectively. Here, r⊥ is the transverse posi-

tion vector, ξ = z−βct ' z− ct plays the role of time-like variable, m0 and γ0 are the electron/positron

rest mass and the unperturbed relativistic gamma factor of the single particle of the electron/positron

beam, respectively. In cylindrical coordinates, r⊥, ϕ , ξ , we look for a solution of the Zakharov-like

system of the form Ψ(r⊥,ϕ,ξ ) = exp [im(ϕ− kcξ/2)]ψm(r⊥,ξ ) with m integer, taking the limiting

case
∣∣∇2
⊥
∣∣� ω4

pe/c2ω2
UH . Let us define the transverse beam size in the form of r.m.s., i.e., σ2

m(ξ ) =

2π
∫ ∞

0 r2
⊥|ψm|2r⊥dr⊥. Under the above assumptions and definitions, from the Zakharov-like system, we

easily obtain the following 2D Gross- Pitaevskii-type equation, viz.,
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where we have introduced the following dimensionless quantities: ξ → ξ/β0, r⊥ → r⊥/σ0, ψm →√
πm!σ2

0 ψm, Kb = Kσ4
0 /ε2, δm = nbσ2

0 /n0γ0ε2m!, σ0 and ε being the initial transverse beam spot

size and the transverse emittance, respectively. We use the virial equation associated with eq. (3)

Figure 1: 3D plots of |ψm|2 as function of x/σ and y/σ for different values of the dimensionless time

ξ for m = 0: Kb = 0.25, δm = 0.5, Am = 0.5 (first row); Kb = 0.75, δm = 0.5, Am = 0.75 (second row);

Kb = 1.0, δm = 1.5, Am = 0.625 (third row).

to get the envelope equation d2(σm
r⊥)

2/dξ 2 + 4Kb(σm
r⊥)

2 = 4Am, where σm
r⊥ →

√
m!σm

r⊥/σ0 and Am =
1
2(m +1)!(1 +Kb)−δm(2m)!2−2(m+1) is constant of motion. Note that, from the envelope equation, the

matching condition for the equilibrium transverse beam spot size, σm
eq, is Kb(σm

eq)
2 = Am.

A preleminary numerical analysis has been carried out by solving eq. (3) assuming the initial normalized

BWF (density profile) as ψm(r⊥,0) = rm
⊥ exp

(
r2
⊥/2

)
. The spatio-temporal evolution of |ψm|2 has been
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Figure 2: 3D plots of |ψm|2 as function of x/σ and y/σ for different values of the dimensionless time ξ

for m = 1: Kb = 0.25, δm = 0.5, Am = 1.1875 (first row); Kb = 0.9375, δm = 0.5, Am = 1.1875 (second

row); Kb = 1.5, δm = 3.5, Am = 2.0625 (third row).

Figure 3: Density plots of |ψm|2 in the x/σ , y/σ plane for different values of the dimensionless time

ξ for m = 1. The choice of the parameters is the one corresponding to Figure 2: Kb = 0.25, δm = 0.5,

Am = 1.1875 (first row); Kb = 0.9375, δm = 0.5, Am = 1.1875 (second row); Kb = 1.5, δm = 3.5, Am =

2.0625 (third row).
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Figure 4: 3D plots (first row) and density plots (second row) of |ψm|2 as function of x/σ and y/σ for

different values of the dimensionless time ξ for m = 2: Kb = 1.5, δm = 5.0, Am = 5.625.

investigated for different values of m, Kb, and δm, at ξ = 0, 0.25T , 0.5T , 0.75T , T , where T = π/
√

Kb.

For both m = 0 and m = 1, when the matching condition of the envelope equation is satisfied, the pro-

file is practically unchanged (see the second row of Figures 1, 2 and 3, respectively). This predicts the

existence of nonlinear coherent states (sometimes called 2D solitons). Furthermore, due to the strong

nonlinearity, the effect of beam halo has been observed for m = 2, as displayed by both 3D and density

plots in Figure 4. Due to the interplay between the strong transverse effects of the plasma wake field

(collective and nonlinear effects) and the magnetic field, envelope oscillations with weak and strong fo-

cusing and defocusing have been observed for m = 0 (see the first and the third row of Figure 1), m = 1

(see the first and the third row of Figures 2 and 3, respectively) and m = 2 (see first and second row of

Figure 4). Finally, the existence of vortices (effect of the orbital angular momentum due to the external

magnetic field) are clearly shown in Figures 2,3 and 4, respectively.

The present investigation seems to be useful for the plasma-based focusing schemes to be employed

in the final focusing stages of linear colliders as well as for manipulating relativistic electron/positron

beams that suggests the new fields of nonlinear and collective singular electron optics.
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