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I. Introduction

In last decade the generation of intense electron beams in laser-plasma interactions has
attracted significant attention of plasma community due to potentially interesting and useful
applications. However, the performance of intense electron beam in these applications can
strongly depend on the energy spectrum of the beam. Recently it has been shown that the
presence of pre-plasma in front of a solid target plays very important role in the establishing
energy spectrum of the beam and has a trend to significantly increase average beam energy.
For example, in recent experiments with planar targets, [1] high-energy tail of fast electrons
with energies much greater than the ponderomotive potential was observed in presence of
pre-plasma with a density scale-length of approximately 10 um. Also, the experiments with
cone shaped targets [2] have shown that the fast electron generation is significantly modified
by the presence of long scale pre-plasma inside the cone. In case of proton acceleration
experiments, increase in maximum proton energy was reported with increase in pre-pulse
energy [3]. However, the underlying physics of the impact of pre-plasma had not clear. Our
study has suggested [4] that the synergetic effects of large electrostatic potential well formed
in pre-plasma and relativistic laser radiation are responsible for the generation of very
energetic electrons with the energy well above so-called ponderomotive scaling. But, the
mechanism of the synergy was not identified in Ref. 4.

Here we present the results of both analytic and numerical studies of the impact of
electrostatic potential well on electron dynamics in and acceleration by linearly polarized
relativistic laser radiation. We show that the presence of electrostatic potential well results in
a stochastic heating of the electron even in the presence of just one plane laser wave and
resembles the Fermi acceleration mechanism [5].

I1. Equations and analytic estimates
We consider the relativistic electron dynamics in the fields of plane laser wave propagating
along z-coordinate and electrostatic electric field directed along z:
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where v, is the electron velocity component along z, a(t,z) is the normalized vector potential
of the laser wave, €(z) is the normalized electrostatic electric field, y is the relativistic factor,
Y=YAYz YALZ) =1+ (a(t,z))z, and v, =1/4/1 - v2 . For the case of just one propagating
wave a(t,z) = a(t —z) from Eq. (1) we find
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For constant electric field Eq. (2) can be integrated and we have
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where t( is a time at which electron crossing boundary z=0, and

dpg =vaY,( —VZ)|t=t0. For simplicity we consider V-shaped Fig.1. *



38" EPS Conference on Plasma Physics (2011) P5.033

normalized electrostatic potential U(z) (see Fig. 1), which is characterized by constant
normalized electric fields, € = const. at z>0 and “potential wall” at z=0 where electron is just
reflected back preserving its energy.

The trajectory of electron, z(t), at positive z can be found by introducing a local time
T =t -z and using velocity v, from Eq. (3):
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where f(t) =y (tg +T)/(0g +€T).

By using Eq. (4) becomes rather straightforward to study the dynamics of electron
motion due to impact of both laser wave and V-shape electrostatic potential. From Eq. (4)
one finds that two consecutive times ty and t; at which electron is rejected from the
boundary z=0 are related by the following equation
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and corresponding parameter 8; =yY,(1 - VZ)| (=g, Can be expressed as following
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For the case of linearly polarized wave a(t,z) = ay, cos(t —z) and §y <<1 (which corresponds

to large electron energy) integral (5) can be taken analytically with required accuracy
~ 2

~0(d() <<1. As a result, introducing parameter E( ) =(yA(t(“_))) /€d_y, which in the

limit Op <<1 1is proportional to E/e (E =y =yay,>>1 is the dimensionless electron
energy), we find
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where C is the Euler constant. Mapping (7, 8) is very similar to the Chirikov standard map
[6]. As a result, we conclude that stochastic heating of electron caused by the synergetic
effects of laser radiation and electrostatic field occurs for ay, > €.

For a deep stochastic regime, a,, > ¢, electron heating can be described by diffusion [6]
in energy space, E (E >>1). For this case from Eq. (7) it follows that the elementary “steps”
in the energy space, OE, and time, Ot, can be estimated, correspondingly, as OE ~ a%vA/s
and Ot ~E/e, where A =const. is a slowly varying logarithmic function in the right hand
side of Eq. (7). As a result the energy diffusion coefficient can be estimated as
Dg ~ (BE)2 /dt ~ (a%,VA)2 /Ee. With such diffusion coefficient the asymptotic time evolution
of the averaged electron energy, (E), and the electron distribution function, f(E,t), is given
by the following expressions:
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II1. Numerical modeling

To verify our analytic estimates we solve electron equation of motion in the form of Eq. (4)
with a proper boundary conditions at z=0. We find that the analytical predictions in the high-
energy limit obtained from equations (7) and (8) are in good agreement with the numerical
calculations. The Fig. 2 shows the comparison of Poincare map in (y,¢) space through z =0,
where the “phase” ¢ =t -z [t /m], where [x] is the integer part of x.

a = 1 ;e =10 ( Numerical) a = 1;e =10 ( Analytical)
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Fig. 2. Comparison of numerical calculations with analytic results obtained from Eq. (7.8).

As a result, to model electron dynamics for large energy we can use mapping
equations (7) and (8) rather than solving more complex equation of motion (4). By using Eq.
(7, 8), the transition from regular (Fig. 3a, 3b) to stochastic (Fig. 3d) motion, with increasing
a,, /¢ ratio and effective “threshold” a, /e ~ 1 is clearly seen in Fig. 3.

3

Fig. 3. Transition from regular to stochastic motion of electron with increasing ratio a,, /€.

To address the issue of the energy of electrons in the beam generated in pre-plasma
(see Ref. 4) we need to consider the potential well of finite depth and analyze the distribution
function of electrons coning out from the well. To be able to carry such analysis but still be
compatible with our previous approach we adopt potential well shown in Fig. 4. We will
assume that the “depth” of the potential well, U(L), is larger than the energy space diffusion
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step-size, U(L) =¢L > OE ~ a%v /e, and electron motion in the well is stochastic ay, >¢€. For
this case one can expect that the kinetic energy of electrons, Ey;,, at z=L will be bounded by

Eyin <OE. As a result, the beam energy can be estimated as Ypeam ~ 1+ oca%v /e, where a~1
is the numerical factor. For relativistic laser intensity this energy is much larger than the
energy following from the ponderomotive scaling Y ponder ~ \[1+a%v (recall that ay, >¢€),

which is in agreement with simulation results from Ref. 4. To verify our estimates we solve
electron equation of motion (4) for potential well from Fig. 4. The distribution function of
electrons coming out of potential well for different values of ay,, €, and L, but keeping

OE ~ a%v /€ constant is plotted in Fig. 5. We find that within the error bar both <y> and <y,>
depend only on a\zV /e, which confirms our qualitative consideration.
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Fig. 4. Potential well V5
with finite depth. Fig. 5. Energy distribution and averaged energies of electrons

coming out of the well. Notice that 8E is kept constant in all cases.

IV. Conclusions

We analyze the heating mechanism of pre-formed plasma electrons due to synergetic effects
of relativistic laser radiation and longitudinal electric field. We consider V-shaped
electrostatic potential well which allows to use the integrals of the motion available for
electron motion in laser and constant electric fields. This approach significantly simplifies
our numerical simulation and allows making some theoretical predictions. Based on our
theoretical results and numerical simulations, which are in agreement with each other, we
conclude that: i) For the ratio of the normalized wave vector potential a,, to electric field €
roughly exceeding unity (ay, /e >1) electron motion in the laser and electrostatic potential
fields becomes stochastic. ii) For a, /e >1 electron dynamics can be considered as a

diffusion in the energy space with the characteristic energy step-size ~ a%v /€ . 1i1) The energy

of electrons escaping from the well (beam electrons) can be estimated as Ypeq, ~ 1+ oca%v /€
which is (in agreement with Ref. 4) much larger than the ponderomotive energy.
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