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I. Introduction 
In last decade the generation of intense electron beams in laser-plasma interactions has 
attracted significant attention of plasma community due to potentially interesting and useful 
applications. However, the performance of intense electron beam in these applications can 
strongly depend on the energy spectrum of the beam. Recently it has been shown that the 
presence of pre-plasma in front of a solid target plays very important role in the establishing 
energy spectrum of the beam and has a trend to significantly increase average beam energy. 
For example, in recent experiments with planar targets, [1] high-energy tail of fast electrons 
with energies much greater than the ponderomotive potential was observed in presence of 
pre-plasma with a density scale-length of approximately 10 µm. Also, the experiments with 
cone shaped targets [2] have shown that the fast electron generation is significantly modified 
by the presence of long scale pre-plasma inside the cone. In case of proton acceleration 
experiments, increase in maximum proton energy was reported with increase in pre-pulse 
energy [3]. However, the underlying physics of the impact of pre-plasma had not clear. Our 
study has suggested [4] that the synergetic effects of large electrostatic potential well formed 
in pre-plasma and relativistic laser radiation are responsible for the generation of very 
energetic electrons with the energy well above so-called ponderomotive scaling. But, the 
mechanism of the synergy was not identified in Ref. 4. 

Here we present the results of both analytic and numerical studies of the impact of 
electrostatic potential well on electron dynamics in and acceleration by linearly polarized 
relativistic laser radiation. We show that the presence of electrostatic potential well results in 
a stochastic heating of the electron even in the presence of just one plane laser wave and 
resembles the Fermi acceleration mechanism [5]. 
 
II. Equations and analytic estimates 
We consider the relativistic electron dynamics in the fields of plane laser wave propagating 
along z-coordinate and electrostatic electric field directed along z: 
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where 

€ 

vz  is the electron velocity component along z, 

€ 

a(t,z) is the normalized vector potential 
of the laser wave, 

€ 

ε(z) is the normalized electrostatic electric field, 

€ 

γ  is the relativistic factor, 

€ 

γ ≡ γAγz, 

€ 

γA(t,z) = 1+ a(t,z)( )2 , and 

€ 

γz =1/ 1− vz
2 . For the case of just one propagating 

wave 

€ 

a(t,z) ≡ a(t − z)  from Eq. (1) we find  

€ 

d
dt

γAγz(1− vz){ } = ε(1− vz).    (2)       

For constant electric field Eq. (2) can be integrated and we have  

€ 

γAγz(1− vz) = δ0 + ε(t − t0 − z),    (3) 

where 

€ 

t0  is a time at which electron crossing boundary z=0, and 

€ 

δ0 = γAγz(1− vz) t=t 0
. For simplicity we consider V-shaped  
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normalized electrostatic potential U(z) (see Fig. 1), which is characterized by constant 
normalized electric fields, 

€ 

ε = const. at z>0 and “potential wall” at z=0 where electron is just 
reflected back preserving its energy.  

The trajectory of electron, 

€ 

z(t) , at positive z can be found by introducing a local time 

€ 

τ = t − z and using velocity 

€ 

vz  from Eq. (3): 
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dz
dt

=
f 2(τ) −1
f 2(τ) +1

, or  

€ 

dz
dτ

=
f 2(τ) −1
2

 ,    (4) 

where 

€ 

f(τ) = γA(t0 + τ) /(δ0 + ετ) .  
By using Eq. (4) becomes rather straightforward to study the dynamics of electron 

motion due to impact of both laser wave and V-shape electrostatic potential. From Eq. (4) 
one finds that two consecutive times 

€ 

t0  and 

€ 

t1 at which electron is rejected from the 
boundary z=0 are related by the following equation 

 

€ 

dτ
γA(t0 + τ)( )2

δ0 + ετ( )20

t1−t 0
∫ = t1 − t0,       (5) 

and corresponding parameter 

€ 

δ1 = γAγz(1− vz) t=t1
 can be expressed as following 

 

€ 

δ1 =
γA(t1)( )2

δ0 + ε(t1 − t0)
.         (6) 

For the case of linearly polarized wave 

€ 

a(t,z) = aw cos(t − z)  and 

€ 

δ0 <<1 (which corresponds 
to large electron energy) integral (5) can be taken analytically with required accuracy 

€ 

~ O(δ0) <<1. As a result, introducing parameter 

€ 

ˆ E (...) = γA(t(...) )( )2
/εδ(...) , which in the 

limit 

€ 

δ0 <<1 is proportional to 

€ 

E /ε (

€ 

E = γ = γAγz >>1 is the dimensionless electron 
energy), we find  
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€ 

t1 = t0 + ˆ E 1.          (8) 

where C is the Euler constant. Mapping (7, 8) is very similar to the Chirikov standard map 
[6]. As a result, we conclude that stochastic heating of electron caused by the synergetic 
effects of laser radiation and electrostatic field occurs for 

€ 

aw ˜ > ε.  
For a deep stochastic regime, 

€ 

aw > ε, electron heating can be described by diffusion [6] 
in energy space, E (

€ 

E >>1). For this case from Eq. (7) it follows that the elementary “steps” 
in the energy space, 

€ 

δE , and time, 

€ 

δt , can be estimated, correspondingly, as 

€ 

δE ~ aw
2 Λ /ε  

and 

€ 

δt ~ E /ε , where 

€ 

Λ ≈ const. is a slowly varying logarithmic function in the right hand 
side of Eq. (7). As a result the energy diffusion coefficient can be estimated as 

€ 

DE ~ (δE)
2 /δt ~ (aw

2 Λ)2 /Eε . With such diffusion coefficient the asymptotic time evolution 
of the averaged electron energy, 

€ 

E , and the electron distribution function, 

€ 

f(E,t), is given 
by the following expressions:  

€ 

E ∝ DEt( )1/3,  and  

€ 

f(E,t)∝ t−1/3 exp −E3 /9DEt( ) .    (9) 
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III. Numerical modeling 
To verify our analytic estimates we solve electron equation of motion in the form of Eq. (4) 
with a proper boundary conditions at z=0. We find that the analytical predictions in the high-
energy limit obtained from equations (7) and (8) are in good agreement with the numerical 
calculations. The Fig. 2 shows the comparison of Poincare map in 

€ 

(γ, φ) space through z = 0, 
where the “phase” 

€ 

φ = t... − π [t... /π], where [x] is the integer part of x. 
 

 
Fig. 2. Comparison of numerical calculations with analytic results obtained from Eq. (7,8). 

 
As a result, to model electron dynamics for large energy we can use mapping 

equations (7) and (8) rather than solving more complex equation of motion (4). By using Eq. 
(7, 8), the transition from regular (Fig. 3a, 3b) to stochastic (Fig. 3d) motion, with increasing 

€ 

aw /ε  ratio and effective “threshold” 

€ 

aw /ε ~ 1 is clearly seen in Fig. 3.  
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Fig. 3. Transition from regular to stochastic motion of electron with increasing ratio 

€ 

aw /ε . 
 

To address the issue of the energy of electrons in the beam generated in pre-plasma 
(see Ref. 4) we need to consider the potential well of finite depth and analyze the distribution 
function of electrons coning out from the well. To be able to carry such analysis but still be 
compatible with our previous approach we adopt potential well shown in Fig. 4. We will 
assume that the “depth” of the potential well, 

€ 

U(L), is larger than the energy space diffusion 
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step-size, 

€ 

U(L) = εL > δE ~ aw
2 /ε, and electron motion in the well is stochastic 

€ 

aw > ε. For 
this case one can expect that the kinetic energy of electrons, 

€ 

Ekin , at z=L will be bounded by 

€ 

Ekin ˜ < δE . As a result, the beam energy can be estimated as 

€ 

γbeam ~ 1+ αaw
2 /ε , where α~1 

is the numerical factor. For relativistic laser intensity this energy is much larger than the 

energy following from the ponderomotive scaling 

€ 

γponder ~ 1+ aw
2  (recall that 

€ 

aw > ε), 
which is in agreement with simulation results from Ref. 4. To verify our estimates we solve 
electron equation of motion (4) for potential well from Fig. 4. The distribution function of 
electrons coming out of potential well for different values of 

€ 

aw , 

€ 

ε , and L, but keeping 

€ 

δE ~ aw
2 /ε constant is plotted in Fig. 5. We find that within the error bar both 

€ 

<γ> and 

€ 

<γz> 
depend only on 

€ 

aw
2 /ε , which confirms our qualitative consideration. 

 
 

 
 

Fig. 4. Potential well 
with finite depth. 

 
Fig. 5. Energy distribution and averaged energies of electrons 

coming out of the well. Notice that 

€ 

δE  is kept constant in all cases. 
 
IV. Conclusions 
We analyze the heating mechanism of pre-formed plasma electrons due to synergetic effects 
of relativistic laser radiation and longitudinal electric field. We consider V-shaped 
electrostatic potential well which allows to use the integrals of the motion available for 
electron motion in laser and constant electric fields. This approach significantly simplifies 
our numerical simulation and allows making some theoretical predictions. Based on our 
theoretical results and numerical simulations, which are in agreement with each other, we 
conclude that: i) For the ratio of the normalized wave vector potential 

€ 

aw  to electric field 

€ 

ε  
roughly exceeding unity (

€ 

aw /ε ˜ > 1) electron motion in the laser and electrostatic potential 
fields becomes stochastic. ii) For 

€ 

aw /ε >1 electron dynamics can be considered as a 
diffusion in the energy space with the characteristic energy step-size 

€ 

~ aw
2 /ε . iii) The energy 

of electrons escaping from the well (beam electrons) can be estimated as 

€ 

γbeam ~ 1+ αaw
2 /ε  

which is (in agreement with Ref. 4) much larger than the ponderomotive energy. 
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