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Introduction.

Transport barriers are of considerable importance in plasma thermal insulation and
minimization of particle losses. The external transport barrier (ETB) is a feature of high
confinement regime (H-mode) which considerably reduces requirements for auxiliary heating
sources. Internal transport barriers (ITB) are important for the advanced tokamak scenario
achievement with high fraction of noninductively driven current, but unlike the H-mode they
are characterized by the nonstationary plasma current profile distribution. The algorithm
elaboration of the barrier formation is a key to drive the spatial distributions of electron
temperature and density to get their specified high values in the plasma center and increase
the energy confinement time. In the paper we present the data on the research of dynamics of
an electronic component on the Globus-M tokamak during the neutral beam injection (NBI).
The emphasis was made on the experiments on the NB injection at the phase of the plasma
current ramp-up. The regimes with the early beam injection create advantages for a reversed
magnetic shear configuration. Also such regimes are generally accompanied by increased
toroidal plasma rotation. The transport barriers might be formed in such conditions inside the
plasma column. Due to the low density specific for the current ramp-up phase it was

previously impossible to achieve a stable discharge on Globus-M with above scenario.

Diagnostics.

The key tool of the research is the upgraded Thomson scattering (TS) diagnostics. It
provided 20 measurements of temperature T¢(R) and density ne(R) during one shot in up to 10
spatial points, located from inner to outer plasma border in an equatorial tokamak plane [1].
The TS data were supplemented by a movable Langmuir probe to get the ne, T, distributions

at the separatrix vicinity. Besides, a wide set of diagnostics tools, including two analyzers of
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neutral particles (NPA) with a tangential and radial view direction [2] was applied. The

Doppler reflectometer [3] provided the data on the
periphery plasma rotation.

On the basis of the diagnostics set and an
equilibrium reconstruction code EFIT the dynamic
modeling was performed using the ASTRA
transport code [4] expanded by the NCLASS
module [5].

Experiment and modeling.

In the discussed experiments on Globus-M
the injection of hydrogen beam (energy 27 keV,
power 0.8 MW) began 5ms after the plasma
current start. The basic characteristics of the
discharge are shown in Fig. 1. The rate of the

plasma current was as high as 8 MA/s. The growth
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Fig.1. Waveforms of shot #26626

of density, signals of soft x-ray and D, emission are observed at the stage of current ramp-up.

The transition to the H-mode is observed at
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Fig.2. TS data, shot#26626.
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For this discharge the dynamic simulation by the ASTRA code has been performed assuming

that the boundary value condition for
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Points- TS experiment, lines —~ASTRA fitting taken from equilibrium

d, ¢ — coefficients of diffusion and thermal conductivity reconstruction performed with the

help of EFIT code [7], subscript index b denoted boundary values. The transport coefficients
were fit in such a way that the density and temperature profiles agreed with the experimental
data. The value of the loop voltage was chosen to match the experimental one by variation of
the effective charge of plasma. Its values were fixed along small radius. Fig. 3 demonstrates
spatial distributions of electron density and temperature at 146 ms (the red line in Fig. 1). The
points in Fig.1 correspond to the experimental data, curves result from the simulation for the
diffusion and thermal conductivity coefficients presented lower (Fig. 3 c, d). The spatial areas
are seen to have the reduced particle and energy transport. In addition to the transport barrier
in the periphery conventional for H-mode, there arises the lowered transport of particle, that is
placed deep inside the plasma column (internal diffusive barrier). The temperature profile
demonstrates only a single barrier, located around the small radius midpoint.

The magnetic shear r/q-(dg/dr) was calculated by solving the equation of the poloidal
magnetic field diffusion with ASTRA code. Its distribution in plasma is presented in Fig.4.
From the data in Figs. 2 and 3, the maximal temperature gradient is observed in the region of
the weak positive shear, whereas the maximal density gradient is in the negative shear close
to its minimal value. The both transport barriers are associated with regime of the weak
magnetic shear [8], whose lifetime is limited by forming a magnetic surface q=1. Fig.1 shows
that just after the forming of surface with g<1 at 147 ms, the SXR and D, intensities start

dropping, the line averaged density growth comes to end, which indicates the confinement
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degradation. Thereafter the strong MHD
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diamagnetic drift of charged particle

measured by Doppler reflectometer have demonstrated that the beginning of the confinement
degradation is accompanied with a fast change of rotation direction. The new rotation
direction appears to be the same as the direction of the ion diamagnetic drift. This fact is
likely to be evidence that positive electric field is suddenly initiated on plasma periphery. In
turn, this field variation may originate due to the strong disturbances of the magnetic field on

the plasma border.

Conclusions.
The TS upgrade provided measurements of full ne and T, profile dynamics on the
Globus-M tokamak. Confident basis for transport simulation is created. The first results on

early beam heating are presented and discussed.
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