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Introduction

Present-day fusion devices generate large amounts of data that are stored in massive databases.

Pattern recognition techniques are very useful for learning data structures of interest directly

from the data, either off-line or in real time. In the present paper we propose a unified framework

for discovering or retrieving data structures based on two pillars: probability and geometry.

Pattern recognition for fusion data

The term pattern recognition encompasses several concepts. Regression refers to learning a—

possibly nonlinear—relation between variables. Clustering and classification are used to group

data points according to similarity of their characteristics. Searching a database for a pattern

in a given query is called information retrieval. All of these tasks basically require a similarity

measure between data points.

Pattern recognition for fusion data is hampered by several data characteristics. First, the

databases are vast, therefore learning algorithms need to work sufficiently fast. Second, the

dimensionality of the data space is often large, causing learning algorithms to perform poorly.

Data dimensionality reduction is essential and can be used for visualization purposes as well.

Third, there is a considerable redundancy between measured quantities due to complex, non-

linear interactions. Finally, the measurements are often subject to substantial uncertainty, both

statistical (e.g. measurement noise) and systematic. In this work, we describe an integrated

framework that tackles these various challenges.

Manifold learning

Data manifolds

Measurements may be represented as data points in a multidimensional Euclidean space. The

next step in the learning process is to recognize that the data often are not merely randomly

distributed throughout this space, but lie scattered (due to the statistical uncertainty) around one

or more manifolds, in general nonlinear, of reduced dimensionality embedded in the Euclidean

space. This is referred to as the concept of (data) manifold learning. A very simple example is

linear regression. The intrinsic geometry of the manifold can be learned for instance by calcu-

lating geodesic distances between the data points [1]. Often a coordinate system can be found
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on the manifold that is related to the underlying physical degrees of freedom that independently

govern the dynamical behavior of the system. Hence, manifold learning can contribute substan-

tially to the physical understanding of the system. In addition, usually pattern recognition tasks

are considerably more effective on the manifold. Thus, data manifold learning simultaneously

addresses two of the difficulties with fusion data mentioned above: reducing data dimensionality

and redundancy in a natural way.

Probabilistic manifolds

(b)

Figure 1: (a) Embedding of the univariate Gaussian man-

ifold and geodesic between two arbitrary Gaussians p1

(µ1 =−4, σ1 = 0.7) and p2 (µ2 = 3, σ2 = 0.2). (b) Visu-

alization of the distributions along the geodesic, showing

the change in mean and standard deviation as a function

of the parameter t along the geodesic.

The fundamental object in the

measurement process is a proba-

bility distribution for the measured

quantity (mostly a voltage over a

sensor). In the field of information

geometry, probability density fami-

lies are interpreted as differentiable

manifolds [2]. A point on the man-

ifold corresponds to a specific PDF

within the family and the family pa-

rameters provide a coordinate sys-

tem on the manifold. The Fisher in-

formation provides a metric tensor

allowing the calculation of geodesic

distances on the manifold. We will

show that modeling the data uncer-

tainty in this way provides a distinct advantage for pattern recognition tasks. Learning of prob-

abilistic manifolds may be combined with regular (data) manifold learning by studying the

submanifold spanned by the data on the probabilistic manifold.

Confinement regime identification

We now apply the concepts of probabilistic and data manifolds to the identification of plasma

confinement regimes. Particularly real-time regime classification will be important for ITER.

We demonstrate the performance of our classification method using data from the ITPA Global

H Mode Confinement Database (DB3) [3]. The only plasma parameters that were examined

in this work in order to differentiate between L and H mode discharges were the central line-

averaged electron density ne and the total power loss Ploss from the plasma.
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Figure 2: Two-dimensional embed-

dings of the DB3 data using the

Euclidean distance without measure-

ment error ((a), per machine and (b),

per confinement mode) and using the

geodesic distance with measurement

error ((c) and (d)).

The key element in our analysis is the modeling of the

in the database mentioned error bars for ne and Ploss,

which are approximate estimates. In line with the prin-

ciple of maximum entropy we identify the measure-

ment value itself with the mean of a Gaussian distri-

bution and the error bar with the standard deviation.

If the noise on ne and Ploss is considered independent,

then the total data distribution is given by the prod-

uct of two univariate Gaussians. By way of illustration,

the two-dimensional univariate Gaussian manifold is

shown embedded in Euclidean space in Figure 1a. A

geodesic between two arbitrary Gaussians is visualized

and the distributions along this geodesic are drawn in

Figure 1b.

Figure 2 shows a series of two-dimensional projec-

tions of the DB3 data. The projections obtained with

the geodesic distance, which take into account the mea-

surement error, clearly exhibit much more structure and

more clear clustering of machines and confinement modes compared to the ones calculated via

the Euclidean distance without consideration of the error bars. A similar three-dimensional pro-

jection of the DB3 data is displayed in Figure 3, showing a complicated data geometry. Geodesic

distances on this manifold would thus have to be computed numerically. Therefore in the sequel

we only employed the probabilistic geometrical information.

Figure 3: Three-dimensional

embedding of the DB3 data.

We next performed a series of classification experiments with

two classes (L and H mode) using 5% of the data for training. We

first carried out k-nearest neighbor (kNN) classification (k = 1),

the results of which are shown in Table 1. Next a support vec-

tor machine (SVM) algorithm was used with a Gaussian kernel

(optimized standard deviation), see Table 1. Both experiments

were performed once without and once with consideration of the

measurement error. The results are clearly better if the measure-

ment error is considered, even using the Euclidean distance. The

best results are obtained with the geodesic distance, since it properly takes into account the

geometry of the probabilistic manifold. It is remarkable that even this approximate and limited
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kNN SVM

Mode Eucl. w/o err. Eucl. with err. GD with err. W/o err. With err.

L 85.1 87.7 91.0 85.6 93.1

H 88.6 89.4 93.0 89.1 96.6

Table 1: Correct classification rates (%) using a kNN and an SVM classifier.

information on the underlying probability distribution is beneficial to the classification task.

Additionally learning the spatial distribution of the data points (regular manifold learning) on

the probabilistic manifold may still improve the classification results.

Conclusion and outlook

We have discussed some of the difficulties related to pattern recognition from fusion data and

we have proposed the technique of probabilistic and data manifold learning to address these

issues. The identification of confinement regimes via classification has been shown to clearly

benefit from information on the measurement uncertainty. The next step in this research program

is to include statistical information in the wavelet domain of plasma time series. Geodesic dis-

tances will be calculated on wavelet distribution manifolds, allowing fast calculation of geodesic

distances for the purpose of dimensionality reduction and pattern recognition for fusion data [4].

Real-time applications are envisaged to confinement mode identification employing the Dα time

series as well as to disruption prediction.

References

[1] J.B. Tenenbaum, V. de Silva, J.C. Langford, Science 290, 2319 (2000)

[2] R.E. Kass, P.W. Vos, ‘Geometrical Foundations of Asymptotic Inference’, Wiley (1997)

[3] http://efdasql.ipp.mpg.de/HmodePublic

[4] G. Verdoolaege, P. Scheunders, ‘Geodesics on the Manifold of Multivariate Generalized

Gaussian Distributions With an Application to Multicomponent Texture Discrimination’,

International Journal of Computer Vision, accepted (2011)

38th EPS Conference on Plasma Physics (2011) P5.053


