

Validation of the current decay model in the initial phase of current quench in high β_p disruptive discharges of JT-60U

Y. Shibata¹, K.Y. Watanabe², N. Ohno¹, M. Okamoto³, A. Isayama⁴, K. Kurihara⁴, N. Oyama⁴, T. Nakano⁴, Y. Kawano⁴, M. Sugihara⁵

¹*Department of Energy Engineering and Science, Graduate School of Engineering, Nagoya University, Nagoya, Japan.*

²*National Institute for Fusion Science, Toki, Japan.*

³*Ishikawa National College of Technology, Ishikawa, Japan*

⁴*Japan Atomic Energy Agency, Naka, Japan.*

⁵*ITER Organization, Cadarache, France.*

1. Introduction

The precise prediction of plasma current decay time, τ , is important in order to estimate the electromagnetic forces acting on vacuum vessel and in-vessel components during the tokamak disruption. The so-called L/R model often used to predict the current decay time in ITER [1] is based on a simple series circuit considering the plasma resistance R_p and inductance L_p , which are constant in time. In the " L/R model", the current decay time represents with $\tau_{L/R} = L_p/R_p$. If the plasma resistivity is defined by Spitzer resistivity [2], the current decay time is mainly determined by the electron temperature T_e and effective charge Z_{eff} . However, the systematic research of the relationship between the current decay time during disruption and the measurement value of L_p and R_p has rarely been done until now.

In the 2008 JT-60U experimental campaign, the current decay in the radiative disruption generated by massive neon gas puff has been investigated [3]. In ref. [3], the current decay during the initial phase of current quench, which is the time region that plasma current decays to 90% of the plasma current just after the current quench start, was investigated through a comparative analysis with the time evolution of R_p and L_p , which were evaluated by the measurement values of magnetic sensor and T_e . It was found that time derivative of L_p is dominant in the determination of current decay time. And the current decay time predicted by the modified L/R model, in which the time derivative of plasma inductance taken into account, gave a good agreement with the experimental current decay time, τ_{exp} .

In the fusion reactor (DEMO), the generation of a lot of spontaneous currents such as bootstrap current is necessary to increase the economic efficiency. In order to generalize the modified current decay model, it is necessary to validate the current model under high bootstrap current in addition to validation in ref [3]. In this paper, we investigated the validation of current decay model in high β_p disruptive discharges of JT-60U.

2. Experimental setup

In Fig. 1, β_p just before the thermal quench is plotted against τ_{exp} . In this figure, τ_{exp} is evaluated by using the following equation:

$$\tau_{\text{exp}} = I_{p0} / (\Delta I_p / \Delta t). \quad (1)$$

Here, I_{p0} is the plasma current just after the thermal collapse, ΔI_p is 10% of I_{p0} , and Δt is the time interval between I_{p0} and $0.9 \times I_{p0}$. In high β_p disruptive discharges, we focused attention on the initial phase of current quench similar to the previous analysis in the radiative disruption generated by massive neon gas puff [3]. The reason why we focused on the initial phase of current quench is that L_p and R_p could be evaluated because these measurements are very noisy except the initial phase due to influence of eddy currents. The value of β_p just before the thermal quench is evaluated from the magnetics and an equilibrium calculation code (CCS code [4]). From Fig. 1, β_p values just before the disruption in high β_p disruptive discharges are above 1.4 and are about 10 times as large as those in the radiative disruption. The plasma inductance is evaluated from the following equation,

$$L_p = \mu_0 R_0 (\Lambda - \beta_p + \ln(8R_0/a) - 2). \quad (2)$$

Here, Λ is Shafranov lambda, R_0 is major radius and a is minor radius. As shown in Eq. (2), the assessment of β_p and Λ is important to obtain L_p . Shafranov lambda is evaluated by using the magnetics and the CCS code in JT-60U. Because the toroidal flux generated by eddy currents would strongly affect the evaluation of β_p by the magnetics during the current quench phase, the β_p is assessed from T_e profile evaluated by using electron cyclotron emission (ECE) measurement and line-averaged density evaluated by using far infrared (FIR) interferometer. In this paper, the time evolution of β_p is evaluated by the following equations:

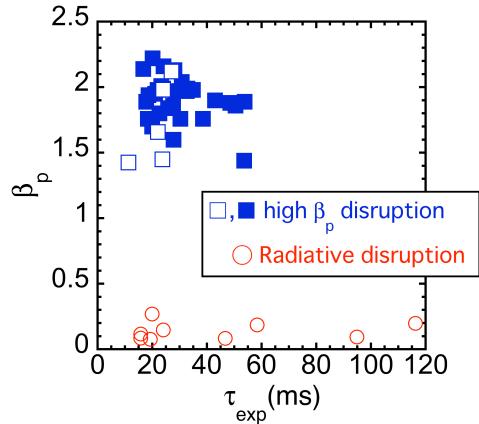


Fig. 1 The poloidal beta just before the disruption is plotted against the experimental current decay time. Open symbols are the analyzed data in this paper.

The reason why we focused on the initial phase of current quench is that L_p and R_p could be evaluated because these measurements are very noisy except the initial phase due to influence of eddy currents. The value of β_p just before the thermal quench is evaluated from the magnetics and an equilibrium calculation code (CCS code [4]). From Fig. 1, β_p values just before the disruption in high β_p disruptive discharges are above 1.4 and are about 10 times as large as those in the radiative disruption. The plasma inductance is evaluated from the following equation,

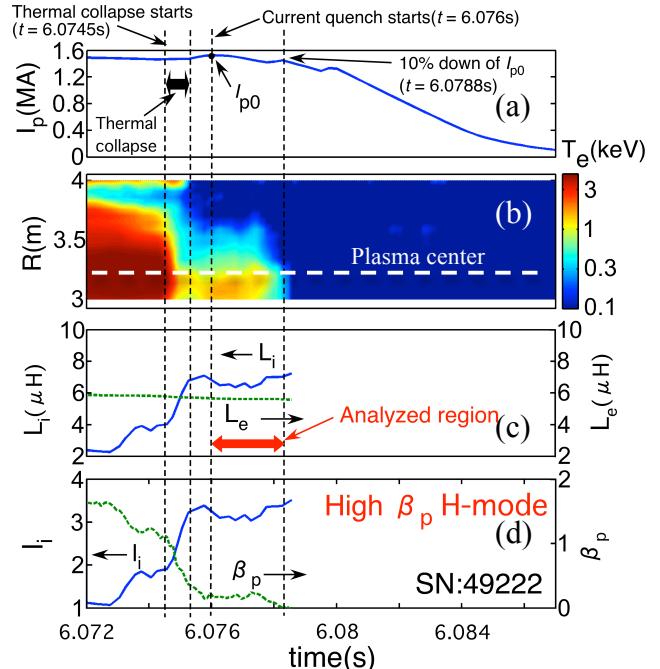


Fig. 2 Typical waveforms of (a) plasma current, (b) profile of electron temperature, (c) plasma internal and external inductance, (d) internal inductance and poloidal beta in high β_p disruption.

$$\beta_p = \frac{\langle \beta_{p-CCS} \rangle}{\langle \beta_p \rangle} \frac{\int_0^a T_e(r) n_e r dr / S}{I_p^2 / 8\pi^2 a^2}. \quad (3)$$

where $\langle \beta_p \rangle$ and $\langle \beta_{p-CCS} \rangle$ are the average value of β_p evaluated by Eq. (3) and CCS code just before the thermal quench, respectively and S is the plasma cross section. In this analyzed data, T_e profile could be evaluated in only 5 shots due to the difficulty of measurement during disruption. The analyzed data in this paper are represented by opened squares in Fig. 1.

3. Results

Typical waveforms of plasma current, I_p , profile of T_e , internal inductance, I_i , and β_p during disruption in high β_p disruptive discharges are shown in Fig. 2. The magnetic configuration of plasma discharge in Fig. 2 is reversed magnetic shear. In Fig. 2, the thermal collapse occurs at $t = 6.0745$ s. It should be noted that the thermal collapse means that the rapid loss of the plasma energy here. After the thermal collapse starts, I_i increases because the current density profile changes from reversed to peaked shape during the thermal collapse. The current quench starts at $t = 6.076$ s and I_i gradually increases. In this discharge, τ_{exp} is 23.7 ms and T_e at the plasma center is above 1 keV during the initial phase of current quench. On the other hand, the time evolution of I_i and T_e during current quench in the radiative disruptions (positive magnetic shear) is different from these in the high β_p disruptive discharges. In radiative disruption, I_i decreases after the thermal collapse starts because the current density profile changes from peaked to flat shape during the thermal collapse. During the current quench, I_i gradually increases similar as the high β_p disruption. T_e at the plasma center during current quench is less than 0.8 keV in radiative disruptions.

In order to investigate influence of T_e on the current decay time in high β_p and the radiative disruptions, T_e of plasma center, T_{e0} , just after the thermal collapse are plotted against τ_{exp} in Fig. 3. In the high β_p disruptive discharges, T_{e0} is higher than 1 keV; especially, T_{e0} in 3 shots exceeds 3 keV. In contrast, T_{e0} is less than 0.8 keV in the radiative disruptions under the almost same current decay time observed in high β_p disruptions. This experimental result indicates that the electron temperature itself plays no major role in determination of the current decay time in the initial phase of the disruption.

In order to validate the current decay model in various discharges, we evaluated the experimental and predicted current decay time during the current quench in high β_p disruptive discharges. Fig. 4 shows the predicted current decay time, τ_{model} , in the high β_p disruptive

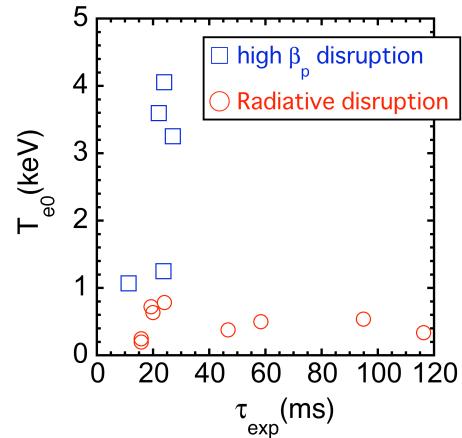


Fig. 3 The electron temperature of plasma center just after the thermal quench is plotted against τ_{exp} . The electron temperature during disruption is evaluated by using ECE measurement.

discharges, as a function of τ_{exp} . In this figure, τ_{model} was evaluated by using L/R model and modified L/R model represented by the following equation,

$$\tau_{L/(R+dL/dt)} = \overline{L_p} / (\overline{R_p} + \Delta L_p / \Delta t), \quad (4)$$

where $\overline{L_p}$ and $\overline{R_p}$ are time-averaged values of L_p and R_p , respectively and $\Delta L_p / \Delta t$ is time derivative of plasma inductance during the initial phase of current quench. As shown in Fig. 5, the values of τ_{model} predicted by modified L/R model give good agreement with τ_{exp} , while τ_{model} predicted by L/R model is two orders of magnitude larger than τ_{exp} in high β_p disruptive discharges. This result indicates that the effect of time derivative of L_p should be taken into account in the current decay model in high β_p disruptive discharges. The modified L/R model can be adapted both for high β_p and radiative disruptions.

4. Summary

The validation of current decay model during the current quench was investigated in high β_p disruptive discharges on JT-60U. It is experimentally confirmed that the electron temperature does not play an important role in the determination of the current decay time in the initial phase of current quench and that values obtained from L/R model are two orders of magnitude larger than the experimental current decay time. The current decay time predicted by the modified L/R model, in which the time derivative of plasma inductance is taken into account, is in fairly good agreement with the experimental data. In future work, we need to perform the MHD equilibrium code for free-boundary condition such as DINA [5] and TSC [6] code under the axisymmetric assumption in order to clear up the determination mechanism of time derivative of plasma inductance.

5. Reference

- [1] T.C. Hender, *et al.*, Progress in the ITER Physical Basis Chapter 3, Nucl. Fusion **47**, S128 (2007).
- [2] L. Spitzer and R. Harm, Phys. Rev. **89**, 977 (1953).
- [3] Y. Shibata, K. Y. Watanabe, M. Okamoto, N. Ohno, A. Isayama, *et al.*, Nucl. Fusion **50**, 025015 (2010).
- [4] K. Kurihara, Fusion Eng. Des., **51-52**, 1049 (2000).
- [5] R. R. Khayrutdinov and V. E. Lukash, Jurnal of Comp. Phys., **109**, 193 (1993).
- [6] S. C. Jardin, N. Pomphrey and J. Delucia, Jurnal of Comp. Phys., **66**, 481 (1986).

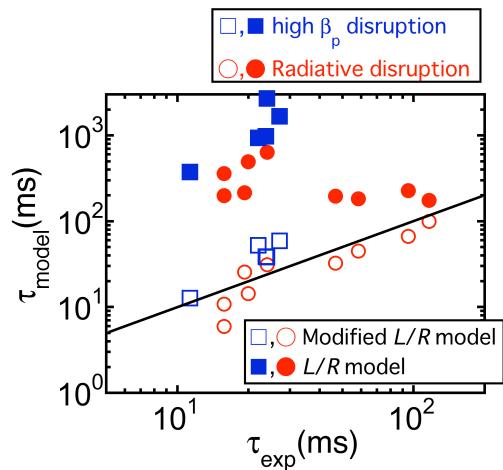


Fig. 4 The predicted current decay time, τ_{model} , in the high β_p disruptive discharges and the radiative disruptions with neon massive gas-puff are plotted against τ_{exp} . Open symbols are the current decay time predicted by the modified L/R model, and close symbols are one predicted by L/R model.