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INTRODUCTION

To rigorously assess the impact of ion cyclotron resonance frequency (ICRF)
heating on the distribution functions of the various plasma constituents, a set of
coupled Fokker-Planck equations needs to be solved, ideally in conjunction with a
powerful wave equation solver and a transport code. As doing so while accounting for
all details of the wave-particle interaction is time consuming, simpler models are often
used to get a crude impression of how the absorbed RF power affects the plasma. Stix
[1,2] proposed a method to analytically compute the isotropic (pitch angle averaged)
distribution function of a population heated by electromagnetic waves. To ensure that
the solution can be found in analytical form, the applicability of the expression
provided by Stix was somewhat limited: It was assumed that the particles are heated at
their fundamental cyclotron frequency and that a not too energetic minority tail is
formed. Moreover, the background plasma particles were assumed to be Maxwellian.

Allowing for numerical rather than analytical integration and adopting the general
Coulomb collision operator for arbitrary distributions proposed by Karney [3], Stix's
method can immediately be extended to describe ICRF heating of not only small
minorities but also of large populations at any cyclotron harmonic, fully accounting
for their Coulomb collisional interaction by solving a set of coupled Fokker-Planck
equations in which none of the species is assumed to be Maxwellian.

GENERALIZATION OF STIX’S MODEL

In case there are no particle sources nor losses, the isotropic (pitch angle averaged)
part of the Fokker-Planck equation for a particle distribution £, can be written as
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in which G, = 2v’F, and G, = 2v’D,, are the drag F, and diffusion D, coefficients
connected to the Coulomb collisions, G, represents the RF diffusion and 7, is the
local energy loss time. In particular for a background of thermal particles and for
heating at the fundamental cyclotron frequency [1,2]



38" EPS Conference on Plasma Physics (2011) P5.097

2P,
3nm

in which Py, is the RF power density, n and m are the density and mass of the
examined (test) species, C, and [, are constants related to various parameters of the
background species f. The sum is on all background species and the function G(x) is
defined by G(x) = [®(x) - 2d'(x)]/2x7, in which ®(x)is the error function.
Integrating Eq.1 over velocity space (and reminding that both F| and its derivative
drop to zero when v — ) yields a simple expression for the test species’ distribution
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The expression found by Stix can immediately be extended to model heating at
higher cyclotron harmonics by describing the velocity dependence of the RF diffusion
term G, via the Kennel & Engelmann operator 7, [4]. Since the 7, operator for
fundamental ICRH (N =1) reduces to |E, * in the limit taken by Stix, generalization

merely requires to substitute the function G, by
G3 - G3TN = G3|JN—1E+ + JN—lE— + JNE//|2 (4)

Knowledge of the RF field polarizations (E,,E ,E,) is now needed and the function
G, 1s no longer related to the power density by a simple proportionality relation.

Although ion cyclotron heating schemes aim at heating a specific ion species, the
other plasma constituents are usually directly or indirectly heated as well. As a result,
aside from writing down a Fokker-Planck equation with the proper RF heating term
for each of the species, the Coulomb collision operator adopted by Stix should be
upgraded to an operator that describes collisional interaction with species away from
thermal equilibrium, including the self-collisions among species of the same kind. The
collisional diffusion and drag coefficients for arbitrary distributions are given
explicitly by Karney [3]. It can readily be verified that for each of the species f, the
G(x) function in G, and G, should be substituted, respectively by
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Because the colhslon operator for the self—colhslons is a non-linear operator, the
solution of the FP equation can no longer be found analytically. In the procedure
described here, the solution is found by setting up an iterative numerical scheme
similar to the one proposed by Louche [5]: In each iteration loop, the Fokker-Planck
equation for all the plasma constituents is solved, taking the distributions from the
previous time step to compute the collision operators. At the end of a series of Fokker-
Planck evaluations of the distribution functions, a convergence check is made. If the
newly found distributions are not yet close enough to the ones found in the previous
iteration a next iteration step is initiated, otherwise the computation is stopped.

EXAMPLE

An example that illustrates all the different ingredients described here to extend the
applicability of Stix’s method is the w = Q,,, = 2€2, ICRF heating scenario proposed
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for ITER’s D-T phase, where simultaneous N=2 ‘majority’ T and N=1 minority *He
ICRF heating (together with significant fast wave electron damping) will take place.
Because the tritons and the electrons absorb RF power both directly and indirectly,
accounting for their self-collisions is crucial in this case. Fig.1 shows the evolution of
several quantities during the first 600 iterations of the numerical procedure. A typical
ITER plasma composed of equal amounts of D and T with 3% of *He was considered.
The total RF power density is Prp=0.5MW/m’, of which 20%, 20% and 60% were
assumed to be absorbed by the electrons, by the Tritons and by the *He ions,
respectively [6]. A loss term corresponding to Tg=2.1s was adopted for all species and
the RF field polarizations estimated with the 1D TOMCAT code [7] were used.
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FIGURE 1: (a) Effective temperatures and (b) power losses for various plasma species in the
w=582315,=2r ICRF heating scheme foreseen for ITER; and evolution of the collisional power
redistribution for (c) He, (d) Tritium and (e) electrons during the iterative procedure.

From (a) one sees that, for the considered parameters, the effective temperatures
reached by the RF heated ions is not very large: Tu.~40keV and Tr=25keV for *He
and T, respectively. Although not directly heated by ICRF, the deuterons achieve
similar temperatures as the tritons while the electrons, which have the largest losses
due to their higher density (b), reach a somewhat lower temperature, T,=20keV. It is
interesting to observe the two different time scales in the 7.; evolution: The ion
dynamics is already ‘settled’ after 20-30 iterations and afterwards only responds to the
slow changes in the background electron distribution. Also note that the total losses
summed over species, which evolve in the time-scale of the electron dynamics, equal
the RF input power when the simulation converges (b). The RF power redistribution is
illustrated in more detail in Figs (c-¢). The well absorbing *He ions (c) transfer most of
the RF power to the bulk ions and only a small fraction to the electrons. The less
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efficiently heated T ions (d) redistribute the RF power absorbed (plus the power
received via collisions with the *He ions) roughly equally to the electrons and to the
deuterons but, because of their large concentration, exhibit considerable losses. In both
cases the self-collision term drops to zero in a small number of iterations. Although
the electrons get power from all species (on top of their direct RF power absorption),
the T,y reached is smaller because of their higher losses (despite the same tg
considered). Their self-collisions evolve very slowly and eventually reach zero at the
end of the simulation. To help achieving convergence on the electron distribution
faster, several Fokker-Plank iterations on the electrons have been nested into each
iteration step of the ions. Also note that, by definition, for each individual species the
sum of the collisional power and the losses is equal to the RF input power.

CONCLUDING REMARKS

Adopting the philosophy proposed by Stix [1,2] to compute the 1D distribution
function of the ICRF heated populations, a system of coupled Fokker-Planck
equations for each of the plasma constituents is solved. Rather than exploring the
possible analytical extensions of Stix’s model as e.g. proposed by Anderson [§], the
here described procedure is based on nested numerical iterations to upgrade the Stix
model to describe RF tail formation of both minority and majority populations at any
cyclotron harmonic by implementing the Kennel & Engelmann expression [4] for the
wave-particle interaction and the Karney expressions [3] for dealing with Coulomb
collisions on populations with arbitrary distribution functions. Including a constant
energy loss time in the collision operator allows incorporating local transport losses in
a crude way. Despite its simplicity, the model presented provides a clear picture of the
local collisional power exchange among the plasma constituents in ICRF heated
discharges and the effective temperatures inferred are representative of results
obtained with more sophisticated (2D) numerical codes [5]. However, it goes without
saying that the here presented model has a number of limitations. An in depth study of
an RF heating scenario requires a model that enables accounting for the actual
machine geometry, the non-uniformity of the plasma and the confining magnetic field,
which gives rise to guiding center orbits drifting away from magnetic surfaces, trapped
and passing subpopulations, etc. Two examples of simulation codes with a high degree
of realism are due to Jaeger et al. [9] (coupling the AORSA wave code to the CQL3D
Fokker-Planck code) and Brambilla et al. [10] (coupling the TORIC wave code to the
SSFPQL Fokker-Planck code).
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