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INTRODUCTION 
To rigorously assess the impact of ion cyclotron resonance frequency (ICRF) 

heating on the distribution functions of the various plasma constituents, a set of 
coupled Fokker-Planck equations needs to be solved, ideally in conjunction with a 
powerful wave equation solver and a transport code. As doing so while accounting for 
all details of the wave-particle interaction is time consuming, simpler models are often 
used to get a crude impression of how the absorbed RF power affects the plasma. Stix 
[1,2] proposed a method to analytically compute the isotropic (pitch angle averaged) 
distribution function of a population heated by electromagnetic waves. To ensure that 
the solution can be found in analytical form, the applicability of the expression 
provided by Stix was somewhat limited: It was assumed that the particles are heated at 
their fundamental cyclotron frequency and that a not too energetic minority tail is 
formed. Moreover, the background plasma particles were assumed to be Maxwellian.  

Allowing for numerical rather than analytical integration and adopting the general 
Coulomb collision operator for arbitrary distributions proposed by Karney [3], Stix's 
method can immediately be extended to describe ICRF heating of not only small 
minorities but also of large populations at any cyclotron harmonic, fully accounting 
for their Coulomb collisional interaction by solving a set of coupled Fokker-Planck 
equations in which none of the species is assumed to be Maxwellian.  

GENERALIZATION OF STIX’S MODEL 
In case there are no particle sources nor losses, the isotropic (pitch angle averaged) 

part of the Fokker-Planck equation for a particle distribution 
0
F  can be written as 
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F  and diffusion 
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D  coefficients 

connected to the Coulomb collisions, 
3
G  represents the RF diffusion and 

E
!  is the 

local energy loss time. In particular for a background of thermal particles and for 
heating at the fundamental cyclotron frequency [1,2] 
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in which 
RF
P  is the RF power density, n  and m  are the density and mass of the 

examined (test) species, fC  and fl  are constants related to various parameters of the 
background species f. The sum is on all background species and the function )G(x  is 
defined by 22])('2)([)G( x/xxx !"!= , in which )(x! is the error function.  

Integrating Eq.1 over velocity space (and reminding that both 
0
F  and its derivative 

drop to zero when !"v ) yields a simple expression for the test species’ distribution 
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The expression found by Stix can immediately be extended to model heating at 
higher cyclotron harmonics by describing the velocity dependence of the RF diffusion 
term 

3
G  via the Kennel & Engelmann operator 

N
T  [4]. Since the 

N
T  operator for 

fundamental ICRH ( 1=N ) reduces to 2

+E  in the limit taken by Stix, generalization 
merely requires to substitute the function 

3
G  by  
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             (4) 
Knowledge of the RF field polarizations ),,( //EEE !+  is now needed and the function 
3
G  is no longer related to the power density by a simple proportionality relation.  

Although ion cyclotron heating schemes aim at heating a specific ion species, the 
other plasma constituents are usually directly or indirectly heated as well. As a result, 
aside from writing down a Fokker-Planck equation with the proper RF heating term 
for each of the species, the Coulomb collision operator adopted by Stix should be 
upgraded to an operator that describes collisional interaction with species away from 
thermal equilibrium, including the self-collisions among species of the same kind. The 
collisional diffusion and drag coefficients for arbitrary distributions are given 
explicitly by Karney [3]. It can readily be verified that for each of the species f, the 

)G(x  function in 
1
G  and 

2
G  should be substituted, respectively by 

!
"

#
$
%

&
+'' (((

)

ff

f

ff

f

f

f

f FdFd
n

Fd
m

kT

n
,0

v

3

,0

4

v

0

2,0

2

v

0

2
'v'vv'v'v

v

1

3

8
G  and  'v'v

v

18
G

** .   (5) 

Because the collision operator for the self-collisions is a non-linear operator, the 
solution of the FP equation can no longer be found analytically. In the procedure 
described here, the solution is found by setting up an iterative numerical scheme 
similar to the one proposed by Louche [5]: In each iteration loop, the Fokker-Planck 
equation for all the plasma constituents is solved, taking the distributions from the 
previous time step to compute the collision operators. At the end of a series of Fokker-
Planck evaluations of the distribution functions, a convergence check is made. If the 
newly found distributions are not yet close enough to the ones found in the previous 
iteration a next iteration step is initiated, otherwise the computation is stopped. 

EXAMPLE 
An example that illustrates all the different ingredients described here to extend the 

applicability of Stix’s method is the 
THe

!=!= 2
3

"  ICRF heating scenario proposed 
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for ITER’s D-T phase, where simultaneous N=2 ‘majority’ T and N=1 minority 3He 
ICRF heating (together with significant fast wave electron damping) will take place. 
Because the tritons and the electrons absorb RF power both directly and indirectly, 
accounting for their self-collisions is crucial in this case. Fig.1 shows the evolution of 
several quantities during the first 600 iterations of the numerical procedure. A typical 
ITER plasma composed of equal amounts of D and T with 3% of 3He was considered. 
The total RF power density is PRF=0.5MW/m3, of which 20%, 20% and 60% were 
assumed to be absorbed by the electrons, by the Tritons and by the 3He ions, 
respectively [6]. A loss term corresponding to τE=2.1s was adopted for all species and 
the RF field polarizations estimated with the 1D TOMCAT code [7] were used.  

  

 
FIGURE 1: (a) Effective temperatures and (b) power losses for various plasma species in the 
ω=Ω3He=2ΩT ICRF heating scheme foreseen for ITER; and evolution of the collisional power 
redistribution for (c) 3He, (d) Tritium and (e) electrons during the iterative procedure.  

From (a) one sees that, for the considered parameters, the effective temperatures 
reached by the RF heated ions is not very large: T3He≈40keV and TTrit≈25keV for 3He 
and T, respectively. Although not directly heated by ICRF, the deuterons achieve 
similar temperatures as the tritons while the electrons, which have the largest losses 
due to their higher density (b), reach a somewhat lower temperature, Te≈20keV. It is 
interesting to observe the two different time scales in the Teff evolution: The ion 
dynamics is already ‘settled’ after 20-30 iterations and afterwards only responds to the 
slow changes in the background electron distribution. Also note that the total losses 
summed over species, which evolve in the time-scale of the electron dynamics, equal 
the RF input power when the simulation converges (b). The RF power redistribution is 
illustrated in more detail in Figs (c-e). The well absorbing 3He ions (c) transfer most of 
the RF power to the bulk ions and only a small fraction to the electrons. The less 
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efficiently heated T ions (d) redistribute the RF power absorbed (plus the power 
received via collisions with the 3He ions) roughly equally to the electrons and to the 
deuterons but, because of their large concentration, exhibit considerable losses. In both 
cases the self-collision term drops to zero in a small number of iterations. Although 
the electrons get power from all species (on top of their direct RF power absorption), 
the Teff reached is smaller because of their higher losses (despite the same τE 
considered). Their self-collisions evolve very slowly and eventually reach zero at the 
end of the simulation. To help achieving convergence on the electron distribution 
faster, several Fokker-Plank iterations on the electrons have been nested into each 
iteration step of the ions. Also note that, by definition, for each individual species the 
sum of the collisional power and the losses is equal to the RF input power. 

CONCLUDING REMARKS 
Adopting the philosophy proposed by Stix [1,2] to compute the 1D distribution 

function of the ICRF heated populations, a system of coupled Fokker-Planck 
equations for each of the plasma constituents is solved. Rather than exploring the 
possible analytical extensions of Stix’s model as e.g. proposed by Anderson [8], the 
here described procedure is based on nested numerical iterations to upgrade the Stix 
model to describe RF tail formation of both minority and majority populations at any 
cyclotron harmonic by implementing the Kennel & Engelmann expression [4] for the 
wave-particle interaction and the Karney expressions [3] for dealing with Coulomb 
collisions on populations with arbitrary distribution functions. Including a constant 
energy loss time in the collision operator allows incorporating local transport losses in 
a crude way. Despite its simplicity, the model presented provides a clear picture of the 
local collisional power exchange among the plasma constituents in ICRF heated 
discharges and the effective temperatures inferred are representative of results 
obtained with more sophisticated (2D) numerical codes [5]. However, it goes without 
saying that the here presented model has a number of limitations. An in depth study of 
an RF heating scenario requires a model that enables accounting for the actual 
machine geometry, the non-uniformity of the plasma and the confining magnetic field, 
which gives rise to guiding center orbits drifting away from magnetic surfaces, trapped 
and passing subpopulations, etc. Two examples of simulation codes with a high degree 
of realism are due to Jaeger et al. [9] (coupling the AORSA wave code to the CQL3D 
Fokker-Planck code) and Brambilla et al. [10] (coupling the TORIC wave code to the 
SSFPQL Fokker-Planck code). 
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