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Spherical torus (ST) fusion applications (e.g. a component test facility [1], or pilot power
plant [2]) and steady-state advanced tokamaks aim to operate continuously at high normalized
beta, Sy = 108<S>aBo/lp, (% = 2u0<p>/Bo?) and high non-inductive current fraction. High
bootstrap current fraction yields a broad current profile, equating to low plasma internal
inductance, l;. While low I; operation is favourable for efficient non-inductive operation, it is
generally unfavourable for global MHD mode stability, reducing the ideal n = 1 no-wall beta
limit, A" Operation of the National Spherical Torus Experiment (NSTX) has
demonstrated high Sy operation with I; typically in the range 0.6 < I; < 0.8, with gy"*"@"
computed by the DCON code to be 4.2 — 4.4. [3] NSTX has more recently demonstrated
transient Sy > 6.5 and Ay/li > 13.5, and pulse-averaged Sy (averaged over constant plasma
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Fig. 1: High gy attained at low [; in NST;( appropriate for future
ST devices. Red/cyan points indicate plasmas with/without n=1
active RWM control. Blue circles indicate stable long pulse
plasma with active RWM control; yellow indicates disruptions.
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equilibrium reconstructions of these plasmas by up to a factor of two. In addition, synthetic
variations of the pressure profile for plasmas with |; ~ 0.38 show these equilibria to be at the
purely current-driven ideal kink stability limit, as they are computed to be ideal unstable at all
values of £y > 0. In this operational regime, passive or active kink and resistive wall mode
(RWM) stabilization is therefore critical. Two new control approaches are investigated in
NSTX. First, combined use of radial and poloidal field RWM sensors in proportional gain
control provided feedback on n = 1 modes. The disruption probability due to unstable RWMs
was reduced from 48% in initial low l; experiments to 14% with this control, but remarkably,
the reduced disruption probability was observed mostly in plasmas at high gy/l; > 11 (Fig. 1).

Disruptions occurred more frequently at lower Sy. This behavior is examined in Fig. 2 for low
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i plasmas with varying plasma toroidal rotation profiles, @; The RWM unstable plasma at Sy
= 4.7 has the highest core rotation, while stable long-pulse plasmas with less peaked @, have
exceeded Sy = 6.5. Active MHD spectroscopy [4] of the stable plasma (Fig. 2c) shows an
increase in resonant field amplification (RFA) of an applied n=1 AC tracer field, indicating a
closer approach to RWM marginal stability. Greater instability seen at lower A/l is
consistent with decreased passive RWM stabilization at intermediate plasma rotation levels
caused by the rotation profile falling between stabilizing ion precession drift and bounce
resonances. [5-7] Fig. 3 shows MISK stability code [5] calculations for a low I; plasma

experimentally reaching the n=1 RWM instability point. The marginally stable experimental
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0.1, where y is the mode growth rate,

additional modifications to the kinetic stabilization physics are underway to further improve
this already close agreement between experiment and theory. [7]

In experiments using both poloidal (23) and radial field (24) RWM sensor arrays for
feedback, the proportional gain and relative phase between the measured mode phase and
applied control field phase were varied for each array. Modelled feedback evolution agrees
with experiment for radial sensor variations (Fig. 4), and also shows the optimal gain is still a
factor of 2.5 greater than the present value. In contrast, the experimentally optimal feedback
phase for the poloidal sensors does not agree with theory (difference up to 90 degrees).
Variations of plasma-induced mode helicity are being investigated as a potential cause.

The second approach for improved RWM stabilization is a newly-implemented RWM
state- space controller using a state derivative feedback algorithm [8], and incorporating
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currents due to the RWM unstable eigenfunction and those induced in nearby 3D conducting
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Fig. 5: Comparison of RWM B, sensor difference

measurements in an open-loop comparison of RWM state space

control using (a) 2 states, and (b) 7 states.

structure by the applied control
field and plasma
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response.
Testing physics s
especially important for ITER
[9] and high neutron output
devices where greater control
coil shielding will be needed.
Using a number of states equal
or greater than required by
Hankel singular value (HSV)

analysis (7 in this case) provides

sufficient 3D conducting structure current detail to match experimental sensors with greater

fidelity during RWM activity (Fig. 5). This controller was used for RWM stabilization

producing long-pulse plasmas (limited by coil heating constraints) (Fig. 6) reaching near

maximum values of fy/l; = 13.4 (Fig. 1).
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Fig. 6: (a) theoretical performance of RWM state space controller (at zero plasma rotation); (b) high
[ long-pulse plasma utilizing RWM state derivative feedback control.
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