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Introduction The RFX-mod machine is equipped with an active control system of the MHD
instabilities. It consists of 192 active coils, their independent power supply and 192 wide radial
field sensors. Active coils and sensors lie on toroidal surfaces and are positioned to form regular
grids (MxN, with M=4 and N=48) in the 6, ¢ coordinates plane. In addition several conducting
structures, with many non axial-symmetric features such as portholes, poloidal and toroidal cuts,
are placed in the neighborhood of the active coils. Their presence shapes the dynamic relation
between the coils currents and the magnetic field.

In particular, the control system is extremely useful in the study of the new helical equilibrium
which spontaneously appears in the RFP configuration at plasma currents above 1 MA [1]. In
such conditions it may be useful to improve the quality of the radial field spatia spectrum
produced by the active control system using a current distribution which reduces the m=1, n=7
side-harmonics produced by the system.

The problem of designing such a decoupler in the space of spatia Fourier components has
proven to be non-trivial and rich of interesting points to be addressed. Most of them derive from
the consideration that the kernel describing the linear relation between two complex signals
(input current harmonics and output flux harmonics) is itself complex. In order to address this
fact, a systemic description of the active control system has been given, making use of the
Unified Signal Theory (UST) developed by Prof. G. Cariolaro at the Padova University [2]. This
conceptual framework to perform abstract Fourier analysis is based on the Haar integral, an
integral which can be defined over any locally compact topological group [3, 4]. The objective
of the work is to study the control system couplings in the Fourier space in order to develop a
real-time dynamic decoupler.

Systemic description The system input (currents) and output (fluxes) quantities are described as
real signals over the domain IyXI,XR—R (denoted by u,y:I;XI,XR—IR) where
1,=Z(1/M)/Z(1) and I,=Z(1/N)/Z(1) are quotient groups and Z(T) denotes the
algebraic group consisting of the integral multiples of the real number T. The first two domains
are used to describe the poloidal and toroidal spatial dimensions, respectively, while the third is
used to represent the time. The relation between input and output is described by the Haar
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integral
y(i,j,t)= [ gli,j,hkt=7)u(h,k,7)dhdkd T (1)

I.x1,xR
with i,h€ly, j,k€l, and t,T€RR . Thekernd function g:IsXI,XI3XI,XIR—IR describes
a space-variant time-invariant linear system. The spatial variance of the system arises from its
toroidal geometry and from the presence of local features such as the poloidal gaps in the shell
and in the support structure.

The Fourier analysis of this system can be performed spatially, temporally or as a whole.
Consequently three different operators are applied to variable names. *,, *, and -,
respectively. Fourier-transformed quantities are defined over domains which are easily derived

by applying the rules of the UST. For example, the signal ii(m,n,f) is defined over the (dual)
domain T,xI,xR and takes values into C. Other examples are & :1,XI,xR—C,
b:IXT,xR—C or §,:IsxI,XI,XI,xR—C. The dua domains I,and I, are
Z(1)/Z(M)and Z(1)/Z(N), respectively.

Relevant Symmetries A condition on, or property of, the kernel or the signals above can
always be described in the primal (anti-transformed) space or in the dual (transformed) space.
This greatly improves the understanding how the system nature. For example, equation (1) has
an equivalent in the dual space which consists in a generalization of the well known theorem on
the spectral representation of linear time-invariant systems. In the framework of the UST, the

derivation is straightforward [5] and gives the following result.

(m,n,f)= f g(m,n,—1,—r,f)a(l,r,f)dldr )

i,x1,
With the given choice of domains, f represents time-frequency, | and r input poloidal and
toroidal harmonic numbers, respectively and m and n output poloidal and toroidal harmonic
numbers, respectively. The fact that the output spectrum is aresult of a convolution explains the
presence of coupling between different harmonics in the gim. . 1.7, 835550) 1
dual space, asshownin Fig. 1.

In the following we will consider other properties, or
symmetries, which may or may not be possessed by the
kernel g and give their interpretation in the dual domain.
The first one is the fact that the kerne is real (

g (l- , j , h , k , t) — m Wherl H iS um to der]ote -2020003878543310887.65432101234567 39101334 387820023

: : : Fig. 1: Normalized spectrum of the [=1, r=7,
the complex conjugation). It is a fundamental property of =88 Hz harmonic.
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the abstract Fourier operator that the transforms of real signals exhibits Hermitian symmetry.
Therefore all the Fourier operators defined above show this symmetry, and the transformed

input and output signals with them, for example

g.(m,n,l,r,t)=g.(—m,—n,—1,—r,t) 3

The second property, herein referred to as strong geometrical symmetry, is described by the
equation g(i,j,h,k,t)=g(—i,—j,—h,—k,t). This kind of symmetry can be possessed by a
system only if the underlying physics, geometry and frame of reference allows it. The MHD
control system shows that symmetry only if the dynamic response of the sensor (k, h) to an
impulse on coail (i, j) is the same as the response of sensor (—k, —h) to an impulse on coil (-1, —j),
for any choice of i, j, h and k. Combining the spatial dua of this equation with (3), turns out that
the spatial dua of the kernel also must be real and therefore the following equation must be
satisfied.

g(m,n,Lr,f)=g(m,n,l,r,—f)=g(=m,—n,~1,-r,f) (4)
It is legitimate to suspect that this property is rarely possessed by systems which have not been
explicitly designed to show it. This condition is relevant because couplings that satisfy this
equation can be modeled with a reduced set of states, being the imaginary part of
g,(m,n,l,r,t) equal to zero.
The third property, referred to as weak geometrical symmetry, exists if there is a trandation
(ig.Jo ho ko)EIsXI,XIsXI, so that §li,j,h,k,t)=g(i—i, j—joh—h,k—k,t) shows the
strong geometrical symmetry. In this case, a simplified expression of a couplings transfer
function exists only if the harmonic numbers of the coupling satisfy the following equation

mi, +nj,—lh,—rk,=p/2 5)

with peZ . For example, the FEM model of the RFX-mod machine used to perform the
development of the dynamic decoupler shows this property with the trandation

(ig.jo o ko)=(0,15/N,0,15/N) , which means that real
Phase of EM{FT, (1 71-(1,7) red, 1,71 7) blue

couplings occurs when the difference of the output and
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Finally, the RFX-mod system shows the gspatial
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invariance along the toroidal direction at frequency ™
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Fig. 2: Frequency dependence of the (1,7)-(-1,-7)
and (-1,-7)-(1,7) couplings phase.

currents flowing in passive structures with non-invariant
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geometry. In the dual domain this means that at zero

freguency the toroidal couplings must vanish.
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Results Equation (2) is used to check the nature of
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Fig. 3: Frequency dependence of the (1,7)-(1,-1)
and (-1,-7)-(-1,1) couplings phase.

representations of the input-output relation. Fig. 2 proves that the RFX-mod machine does not

in the CARIDDI code [6], which supports state space

exhibit the strong geometrical symmetry. In fact, the
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phase of the coupling between the |=1, r=7 and m=-1,
n=-7 harmonics (denoted by (1,7)-(-1,-7)) differs from
that of the (-1,-7)-(1,7) coupling. On the other hand,
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Fig. 3 proves that the model shows the weak
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geometrica symmetry and that the predictions of the
theory are correct. Actualy the (1,7)-(1,-1) and (-1,-7)-
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Fig. 4: Frequency dependence of the (1,7)-(1,-1)
evident the fact that the amplitude of the (1,7)-(1,-1) and (-L-7)-(-1,1) couplings amplitude (log scale).

coupling vanish at low frequency, also as predicted by the abstract Fourier analysis. Apart these

(-1,1) couplings are identical. Finally Fig. 1, makes

numerical validations, this analysis explains the reasons of quite an unexpected fact: that the
dynamic relation between the output poloidal side-harmonics of a given input harmonic can be
modeled with a real kernel. This is relevant for the design of the decoupler in the dual space
because it means that the number of states of the real-time implementation can be halved.
Conclusions The use of abstract Fourier analysis has proven invaluable to improve the
understanding of the behavior of the RFX-mod active control system of the MHD instabilities
and a powerful tool to connect the primal and the dual descriptions of the system. This has been
used to reduce the size of the modal decoupler, easing its real-time implementation.
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