
Modeling of spatial harmonic transfer functions and its application to the 
decoupling of the RFX-mod active control system

A. Soppelsa1), G. Marchiori1), N. Marconato1), P. Piovesan1), F. Villone2)

1) Consorzio RFX, EURATOM/ENEA Association, Padova, Italy
2) Università di Cassino, Cassino, Italy

Introduction The RFX-mod machine is equipped with an active control system of the MHD 

instabilities. It consists of 192 active coils, their independent power supply and 192 wide radial 

field sensors. Active coils and sensors lie on toroidal surfaces and are positioned to form regular 

grids (M×N, with M=4 and N=48) in the ,  coordinates plane. In addition several conductingθ φ  

structures, with many non axial-symmetric features such as portholes, poloidal and toroidal cuts, 

are placed in the neighborhood of the active coils. Their presence shapes the dynamic relation 

between the coils currents and the magnetic field.

In particular, the control system is extremely useful in the study of the new helical equilibrium 

which spontaneously appears in the RFP configuration at plasma currents above 1 MA [1]. In 

such conditions it  may be useful to improve the quality of the radial  field spatial  spectrum 

produced by the active control system using a current distribution which reduces the m=1, n=7 

side-harmonics produced by the system.

The problem of designing  such  a decoupler in the space of spatial  Fourier components has 

proven to be non-trivial and rich of interesting points to be addressed. Most of them derive from 

the consideration that  the  kernel describing the  linear relation between two  complex  signals 

(input current harmonics and output flux harmonics) is itself complex. In order to address this 

fact,  a systemic description of the active control system has been given, making use of the 

Unified Signal Theory (UST) developed by Prof. G. Cariolaro at the Padova University [2]. This 

conceptual framework to perform abstract Fourier analysis is  based on the  Haar integral, an 

integral which can be defined over any locally compact topological group [3, 4]. The objective 

of the work is to study the control system couplings in the Fourier space in order to develop a 

real-time dynamic decoupler.

Systemic description The system input (currents) and output (fluxes) quantities are described as 

real  signals  over  the  domain  I ×I×ℝℝ  (denoted  by  u , y : I ×I×ℝℝ ) where 

I =ℤ1 /M /ℤ1  and  I=ℤ1/N /ℤ1  are  quotient  groups  and ℤT   denotes the 

algebraic group consisting of the integral multiples of the real number T. The first two domains 

are used to describe the poloidal and toroidal spatial dimensions, respectively, while the third is 

used to represent the time. The relation between input  and output  is described by the Haar 
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integral

y i , j , t = ∫
I×I×ℝ

g i , j , h , k ,t−uh , k ,dhdk d  (1)

with i ,h∈ I  , j , k∈I  and t ,∈ℝ . The kernel function g : I×I×I ×I×ℝℝ  describes 

a space-variant time-invariant linear system. The spatial variance of the system arises from its 

toroidal geometry and from the presence of local features such as the poloidal gaps in the shell  

and in the support structure.

The  Fourier  analysis  of  this  system can be  performed  spatially,  temporally  or as  a  whole. 

Consequently three  different  operators  are  applied  to  variable  names: · s ,  · t  and  · , 

respectively. Fourier-transformed quantities are defined over domains which are easily derived 

by applying the rules of the UST. For example, the signal um , n , f  is defined over the (dual) 

domain  I ×I×ℝ  and  takes  values  into  ℂ .  Other  examples  are  us : I×I×ℝℂ , 

ut : I× I×ℝℂ  or  gs : I ×I×I×I×ℝℂ .  The  dual  domains  I and  I are 

ℤ1/ℤM  and ℤ1/ℤN  , respectively.

Relevant  Symmetries A condition on,  or  property of,  the  kernel  or  the  signals  above  can 

always be described in the primal (anti-transformed) space or in the dual (transformed) space. 

This greatly improves the understanding how the system nature. For example, equation (1) has 

an equivalent in the dual space which consists in a generalization of the well known theorem on 

the spectral representation of linear time-invariant systems.  In the framework of the UST,  the 

derivation is straightforward [5] and gives the following result.

y m ,n , f = ∫
I×I

gm ,n ,−l ,−r , f  ul , r , f dl dr (2)

With  the  given choice  of  domains,  f represents  time-frequency,  l and  r input  poloidal  and 

toroidal harmonic numbers, respectively and  m and  n output poloidal and toroidal harmonic 

numbers, respectively. The fact that the output spectrum is a result of a convolution explains the 

presence of coupling between different harmonics  in the 

dual space, as shown in Fig. 1.

In  the  following  we  will  consider  other  properties,  or 

symmetries, which may or may not  be possessed by the 

kernel g and give their interpretation in the dual domain.

The  first  one  is  the  fact  that  the  kernel  is  real  (

gi , j ,h , k , t =g i , j , h , k , t   when  ·  is used to denote 

the complex conjugation). It is a fundamental property of Fig. 1: Normalized spectrum of the l=1, r=7,  
f=88 Hz harmonic.
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the abstract Fourier operator that the transforms of real signals exhibits Hermitian symmetry. 

Therefore all  the  Fourier  operators defined above  show this symmetry,  and the transformed 

input and output signals with them, for example

gs m,n , l , r , t = gs−m,−n ,−l ,−r , t  (3)

The second property,  herein referred to as strong geometrical symmetry, is described by the 

equation  gi , j ,h , k , t =g −i ,− j ,−h ,−k ,t  . This kind of symmetry can be possessed by a 

system only if the underlying physics, geometry and frame of reference allows it. The MHD 

control system shows that symmetry only if the dynamic response of the sensor (k,  h) to an 

impulse on coil (i, j) is the same as the response of sensor (−k, −h) to an impulse on coil (−i, −j), 

for any choice of i, j, h and k. Combining the spatial dual of this equation with (3), turns out that 

the spatial dual of the kernel also must be real and therefore the following equation must be 

satisfied.

gm ,n ,l , r , f = gm ,n ,l , r ,−f = g−m ,−n ,−l ,−r , f  (4)

It is legitimate to suspect that this property is rarely possessed by systems which have not been 

explicitly designed to show it.  This condition is relevant  because couplings that  satisfy  this 

equation  can  be  modeled  with  a  reduced  set  of  states,  being  the  imaginary  part  of 

gs m,n , l , r , t   equal to zero.

The third property, referred to as weak geometrical symmetry, exists if there is a translation 

i0, j0,h0,k0∈ I×I×I×I  so  that  gi , j ,h , k , t =g i−i0, j− j0,h−h0,k−k0, t   shows  the 

strong  geometrical  symmetry.  In  this  case,  a  simplified  expression  of  a  couplings transfer 

function exists only if the harmonic numbers of the coupling satisfy the following equation

mi0nj0−lh0−rk 0=p/2 (5)

with  p∈ℤ .  For  example,  the  FEM model  of  the  RFX-mod machine  used  to  perform the 

development  of  the  dynamic  decoupler  shows  this  property  with  the  translation 

i0, j0,h0,k0=0,15 /N ,0,15/N  , which means that real 

couplings occurs when the  difference of the  output and 

input toroidal harmonic numbers is an integral multiple 

of 8.

Finally,  the  RFX-mod  system  shows  the spatial 

invariance along the toroidal direction at frequency 

zero,  because the source of toroidal  non-invariance are 

currents flowing in passive structures with non-invariant Fig. 2: Frequency dependence of the (1,7)-(-1,-7)  
and (-1,-7)-(1,7) couplings phase.
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geometry.  In the dual domain this means that at zero 

frequency the toroidal couplings must vanish.

Results Equation (2)  is  used to  check the nature of 

couplings evaluating the transfer function matrix of the 

harmonic  model  of  the  system,  which  has  been 

calculated  taking  advantage  of  the  peculiar 

implementation of the Finite Elements Method present 

in the CARIDDI code [6],  which supports state space 

representations of the input-output relation.  Fig. 2 proves that the RFX-mod machine does not 

exhibit  the strong geometrical symmetry.  In fact,  the 

phase of the coupling between the l=1, r=7 and m=-1, 

n=-7 harmonics (denoted by (1,7)-(-1,-7)) differs from 

that of the (-1,-7)-(1,7) coupling.  On the other hand, 

Fig. 3 proves  that  the  model  shows  the  weak 

geometrical symmetry and that the predictions of the 

theory are correct. Actually the (1,7)-(1,-1) and (-1,-7)-

(-1,1)  couplings  are  identical.  Finally Fig. 1,  makes 

evident  the fact  that  the amplitude of the (1,7)-(1,-1) 

coupling vanish at low frequency, also as predicted by the abstract Fourier analysis. Apart these 

numerical validations, this analysis explains the reasons of quite an unexpected fact: that the 

dynamic relation between the output poloidal side-harmonics of a given input harmonic can be 

modeled  with a real kernel.  This is relevant for the design of the decoupler in the dual space 

because it means that the number of states of the real-time implementation can be halved.

Conclusions  The  use  of  abstract  Fourier  analysis  has  proven  invaluable  to  improve  the 

understanding of the behavior of the RFX-mod active control system of the MHD instabilities 

and a powerful tool to connect the primal and the dual descriptions of the system. This has been 

used to reduce the size of the modal decoupler, easing its real-time implementation.
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Fig. 3: Frequency dependence of the (1,7)-(1,-1)  
and (-1,-7)-(-1,1) couplings phase.

Fig. 4: Frequency dependence of the (1,7)-(1,-1)  
and (-1,-7)-(-1,1) couplings amplitude (log scale).
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