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The effective Larmor radius. This quantity is suggested by the usual drift wave theory. The

equations

∂v
∂ t

+∇ ·v = − e
m

∇φ +Ωciv×n̂

∂n
∂ t

+∇·(nv) = 0 and n = n0 exp

(
eφ
Te

)

The result of these three equations is the Ertel’s theorem d
dt

(
ω+Ωci

n

)
= 0 where the vorticity is

ω ≡ ∇×v directed in 2D along z. It is assumed that the plasma rotates with the velocity u in

poloidal direction. The solution of the general equation involves an arbitrary function F

ln
(

1+ εn∇2
⊥φ

)
= lnF (φ −ux)+ lnn0 +

εnφ
T (x)

where ρs
Ln0

≡ εn, with the profile of the density taken exponential n(x) = n0 exp(−εnx). Choos-

ing the arbitrary function asF (φ −ux) ≡ exp
[
εn

(
x− φ

u

)]
then to the lowest order in εn we

have

∇2
⊥φ =

(
1

T (x)
− vdia0

u

)
φ

The parameter k2
0 ≡ 1

T −
vdia
u appears currently in the theory of drift waves (Petviashvili, Horton,

Spatschek, Nycander, etc). This suggests to introduce

1
(

ρe f f
s

)2 ≡ 1
ρ2

s

(
1− vdia

u

)

Effect on the drift waves. When the effective Larmor radius goes to infinity ρe f f
s → ∞ due

to the fact that the diamagnetic velocity becomes very close to the rotation velocity, the ef-

fect is to re-define the diamagnetic velocity, which becomes an effective diamagnetic velocity:

v∗ → ve f f
∗ = ρe f f

s cs
Ln

. If we assume that in this regime the transversal wavenumbers k⊥ remains

finite, the diamagnetic frequency tends to infinity ω e f f
∗ = k⊥

ρe f f
s cs
Ln

→ ∞. This means that the

basic resonance that leads to excitation of drift waves ω −ω ∗ → ω −ωe f f
∗ can only be re-

alised for very high frequency of the perturbation, ω → ∞, which is incompatible with the
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H-mode flow. Then we have to assume that when v∗ → u the perpendicular (here poloidal)

wavenumber cannot remain finite and actually must approach 0, and we have: (1) k⊥ → 0 i.e.

the poloidal wavelength becomes very large; and (2) ρ e f f
s → ∞ i.e. the product

(
k⊥ρe f f

s

)
→ 0

which means ωe f f
∗ → 0 . Then for the drift wave we have: very large poloidal wavelengths

(quasi-zonal flow), slow poloidal oscillations. This is compatible with flow and does not use

argument of the suppression by finite shear. Physically, radially elongated structures will form

and on them secondary perturbations can propagate very rapidly in the radial direction, possi-

bly explaining non-local transport events. The quantity ρ e f f = (1− v∗e/u)−1/2 ρs (which we

call effective Larmor radius) and the effective sound speed ce f f
s = ρe f f Ωi are the parameters

which characterize this regime, ρe f f → ∞, ce f f
s → ∞. The same parameters govern the existence

of vortical structures. Emission of drift waves (Cherenkov-type radiation) when u approaches

from above v∗e makes that the regime identified is priviledged and is an attractor for the system

([1]).

The state with ρe f f
s → ∞ is privileged The Field Theory shows us that a state with sup-

pressed compressibility of the polarization drift is Euler type, conformal invariant, no internal

space scale. The density is decoupled from the vorticity. It is known from studies of stationary

distribution of vorticity that the system evolves to a profile of rotation with zero vorticity over

almost all radial domain with the exception of a small region: either in the centre (for cuasi-

singular vortices like typhoons) or ring-type distribution, at the edge, a version of dipole. We

take this as a working hypothesis.

We note from the equation
dn
dt

− n0

B0Ωci

d
dt

∇2
⊥φ = 0

that the evolution of the vorticity ∇2
⊥φ imposes a similar evolution of the density. This means

that the tendency of the vorticity to collapse on the center and form a singular filament of

vorticity will impose a similar behavior for the density d
dt ω ≡ d

dt ∇2
⊥φ has an evolution that

reflects the pinch of ω toward the center. It results that n will also have a pinch toward the

center ∂n
∂ t = n0

B0Ωci

∂
∂ t ∇

2
⊥φ ,

∂
∂ t

1
n0

∂n
∂ r

� ∂
∂ t

1
csρs

vdia �
1

B0Ωci

∂
∂ r

∂
∂ t

∇2
⊥φ

taking u slowly changing,

− ∂
∂ t

(
1− vdia

u

)
� csρs

B0Ωci

1
u

∂
∂ t

∂ω
∂ r

The accumulation to the center of the vorticity means that 1
u

∂
∂ t

∂ω
∂ r → 0 over almost all plane,
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with the exception of a small region around the center or at the periphery. Then

∂
∂ t

(
1− vdia

u

)
→ 0

which means that the factor 1− vdia/u tends to become a constant in time, or : vdia → u .

Again we have invoked the fact that the vorticity evolves such as to vanish over almost all

plane. This can be realized only if the density will evolve such that its diamagnetic velocity

tends to become equal to the rotation velocity.

The presence of a maximum of the diamagnetic velocity. The H mode is characterized by

the existence of a layer of small radial extension (∼ 1 cm in DIII-D) close to the Last Closed

Magnetic Surface, where the plasma is in poloidal rotation. The poloidal rotation has strong

shear and the suppression of the drift waves by the sheared velocity leads to the increase of the

density. Such a layer has high magnitude of vorticity and induces a concentration of the density

(due to the Ertel ’s theorem) and of current density (at equilibrium the current density and the

vector of the vorticity are aligned and their maxima must coincide). We can have the situation

where the diamagnetic velocity has a local maximum dvdia
i

dr = 0 and a significant value of the

curvature, d2vdia
i

dr2 ∼ cs
ρsLn

with positive sign. We consider the state consisting of the increase of

the poloidal rotation. Although it ultimately will be substantially higher than the diamagnetic

velocity (∼ 3× vdia
i ) in this phase the rotation velocity is slightly smaller than the diamagnetic

velocity and we have the equation for the perturbation of the potential related to the drift wave

or to a cuasi-coherent structure which can be generated on the background of the rotation

Δφ = −k
2
0φ + γφ 3

since the term with φ 2, is zero due to d
(
vdia

i

)
/dr = 0. The coefficient in the first term is k

2
0 =

vdia
i
u − 1 ≥ 0 and γ ≡ ρs

Ln

d2vdia
0

dr2
1

6u3 . We make the substitution y → y′ =
( γ

2

)1/2
y and introduce a

parameter ν to be determined from the algebraic equation

(1+ν)
(

2m

1+
√

ν

)2

≡ k
2
0

γ/2

where m is a parameter to be explained later. We consider the spatial variation along x fixed at

the maximum of the diamagnetic velocity and the equation is re-written as

d2φ
dy′2

−2φ 3 +(1+ν)
(

2m

1+
√

ν

)2

φ = 0

The solution is

φ
(
y′

)
=
√

ν
2m

1+
√

ν
sn

(
2m

1+
√

ν
y′;ν

)
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where sn is the Jacobi elliptic function with real elliptic parameter 0 ≤ ν ≤ 1 . The period of the

elliptic function sn is 2K(ν)

K(ν) ≡
∫ π/2

0

(
1−ν sin2 (t)

)−1/2
dt

Without fixing for the moment the parameter m we note that for ν = 1 the solution is a simple

kink

φ (y) = m tanh

(
m

√
γ
2

y

)

This is a isolated jump of the perturbed potential and generates a flow which is superimposed

on the background rotation u. We note that the flow effectively consists of a localised radial

structure and the amplitude of the radial flow together with the spatial width along the y direction

measured by m. More interesting are the periodic solutions with ν �= 1, consisting of a sequence

of localised pairs of positive and negative radial impulses of the same type as the previous one.

This comes from

sn(x;ν) =
π

2
√

νK(1−ν)

n=∞

∑
n=−∞

(−1)n tanh

[
π

2K(1−ν)
(x−2nK)

]

and the region of periodicity is

x ∈
[
−K(ν)

(
1+

√
ν
)

2m
,
K(ν)

(
1+

√
ν
)

2m

]

When the radial positive and negative velocities are combined they create a sequence of periodic

filaments distributed equidistant along the poloidal circumference.
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