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A method for calculating the plasma rotation velocity caused by the effect of fluctua-

tions due to instabilities and/or by externally imposed sources is presented for multiple

ion species plasmas in a general toroidal magnetic field. We assume that the distribu-

tion function is perturbed from the Maxwell distribution function fa0 by the presence of

sources. Then we start with the following drift kinetic equation for a perturbed distribu-

tion function fa1 for species a:

V(fa1)−
∑

b

Cab(fa1, fb1) = Sa + La

with V =
[
v∥b + cΦ′(ρ)B ×∇ρ/⟨B2⟩

]
· ∇ − v(1 − ξ2)/(2B2) B · ∇B ∂/∂ξ, where b =

B/B; v∥ = b · v; ξ = v∥/v; Φ(ρ) is the electrostatic potential; the constant ρ labels

a magnetic surface; ⟨·⟩ denotes the flux-surface average; and Sa and La represent the

source term driving plasma rotation and the loss term. In this formulation we use an

approximate momentum-conserving form [1] for the linearized Fokker-Planck collision

operator Cab(fa1, fb1) ≡ Cab(fa1, fb0) + Cab(fa0, fb1):

Cab(fa1, fb1) ≃ νD
ab(v)L(fa1) + ξ

[
C1

ab(f
1
a1, f

1
b1) + νD

ab(v)f1
a1

]
+ P2(ξ) ∆Cab(f

2
a1, f

2
b1),

where Cab(Pl(ξ)φa(v), Pl(ξ)φb(v)) = Pl(ξ)C
l
ab(φa(v), φb(v)); Pl(ξ) is the Legendre poly-

nomials; f l
a1 = (l + 1/2)

∫ 1

−1
Pl(ξ)fa1dξ; ∆Cab(f

2
a1, f

2
b1) = C2

ab(f
2
a1, f

2
b1) + 3νD

ab(v)f 2
a1; L is

the pitch-angle scattering operator; and νD
ab(v) is the deflection collision frequency. We

further approximate the collision operator C2
ab(f

2
a1, f

2
b1) by the energy-dependent Krook

term [2] −νT
ab(v)f 2

a1. The collision term P2(ξ)∆Cab can be neglected in the low collisional-

ity regime although it should be retained in th collisional (Pfirsch-Schlüter) regime. We

model the loss term by an external drag with characteristic frequency νa0 in the form:

La = −νa0 ξ f 1
a1. It is noted here that the suffixes with the Roman indices a and b represent

the electron and ion species, and those with the Greek indices α, β and γ represent only

ion species.

Let us introduce the following auxiliary equations:

V(f (k)
sa ) +

∑

b

Cab(f
(k)
sa , f

(k)
sb )− νa0 ξ f (k)1

sa =
ea

Ta

Bv∥

(
v2

v2
a

− 5

2

)k

fa0 (k = 0, 1) (1)
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and

V (he) + Ce(he)−P2(ξ)ν̃
T
e (v)h2

e − νe0 ξ h1
e = −ξ

∑

α

′ [
C1

eα(f (0)1
se , f (0)1

sα ) + νD
eα(v)f (0)1

se

]
, (2)

where Ce(he) = ξ[C1
ee(h

1
e, h

1
e)+νD

ee(v)h1
e]+νD

e (v)L (he); ν̃T
ea(v) = νT

ea(v)−3νD
ea(v); νD

a (v) =
∑

b νD
ab(v); ν̃T

a (v) =
∑

b ν̃T
ab(v);

∑′
α means the summation only over ions; and ea = Zαe,

ma, Ta and va =
√

2Ta/ma are the charge, the mass , the temperature and the thermal

velocity for species a.

The solutions to the equations (1) and (2) can be written in the form [3]:

f (k)
sa = − 1

⟨B2⟩
1

f ⋆
ca

νD
a (v)

νaa

K(k)
sa (v) ga, (3)

he = − 1

⟨B2⟩
1

f ⋆
ce

νD
e (v)

νee

Kh(v) ge (4)

with

f⋆
ca = − νD

a (v)

νaa

1

⟨B2⟩
3

2
⟨B

∫ 1

−1

dξ ξ ga ⟩,

where K
(k)
sa (v) = ⟨Bf

(k)1
sa ⟩ , Kh(v) = ⟨Bh1

e ⟩, νab = 4πnbe
2
ae

2
b lnΛ/(m2

av
3
a); nb is the number

density, and ga is the solution to the kinetic equation with the pitch-angle-scattering and

Krook collision terms:

V(ga) + νD
a (v)L (ga)− P2(ξ)ν̃

T
a (v)g2

a = νaa B ξ. (5)

Using the relations f
(k)1
sa = B K

(k)
sa /⟨B2⟩ and h1

e = B Kh/⟨B2⟩, we find the functions

K
(k)
sa (v) and Kh(v) to satisfy the equations

f⋆
ta

f ⋆
ca

νD
a (v) K(k)

sa −
∑

b

C1
ab( K(k)

sa , K
(k)
sb ) + νa0K

(k)
sa = − ea

Ta

⟨B2⟩ v
(

v2

v2
a

− 5

2

)k

fa0, (6)

f ⋆
te

f⋆
ce

νD
e (v) Kh − C1

e ( Kh) + νe0Kh =
∑

α

′ [
C1

eα( K(0)
se , K(0)

sα ) + νD
eα(v) K(0)

se

]
, (7)

where f ⋆
ta = 1− f ⋆

ca.

Noting the relation

⟨
∫

dv
he

fe0

Se ⟩ ≃
me

neTe

1

⟨B2⟩
1

τee

[
⟨Bneu∥e⟩ −

3

5

⟨Bq∥e⟩
Te

]∑

α

′
Z2

α⟨Bnαu
(0)
∥α ⟩,

we can obtain the simultaneous linear equations for the parallel ion flows ⟨Bnαu∥α⟩ =

⟨B
∫

dvv∥fα1⟩ and ⟨Bq∥α⟩ = ⟨B
∫

dvv∥(mαv2/2− 5Tα/2)fα1⟩:

∑

β

′

 Lαβ

11 Lαβ
12

Lαβ
21 Lαβ

22





 ⟨Bnβu∥β⟩

2
5

⟨Bq∥β⟩
Tβ


 =

nαTα

mα

ταα⟨B2⟩





(
tUα

)−1 ⟨
∫

dv
Sα

fα0


 f

(0)
sα

f
(1)
sα


⟩
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+
Te

Tα

1
∑′

γ(e
2
γ/e

2
α)⟨Bnγu

(0)
∥γ ⟩

⟨
∫

dv
he

fe0

Se ⟩


 1

0






 , (8)

where τ−1
ab = (4/3

√
π)νab; ⟨Bnαu

(k)
∥α ⟩ = ⟨B

∫
dvv∥f

(k)
sα ⟩, ⟨Bq

(k)
∥α ⟩ = ⟨B

∫
dvv∥(mαv2/2 −

5Tα/2)f (k)
sα ⟩, and

Uα =


 ⟨Bnαu

(0)
∥α ⟩ ⟨Bnαu

(1)
∥α ⟩

2
5

⟨Bq
(0)
∥α

⟩
Tα

2
5

⟨Bq
(1)
∥α

⟩
Tα


 .

The coefficients Lαβ
ij in (8) are defined by

Lαβ
11 =

(
µ⋆

α1 −M00
α + να0 ταα

)
δαβ −

e2
β

e2
α

N00
αβ,

Lαβ
12 =

(
µ⋆

α2 + M01
α

)
δαβ +

e2
β

e2
α

N01
αβ,

Lαβ
21 =

(
µ⋆

α2 + M10
α

)
δαβ +

e2
β

e2
α

N10
αβ,

Lαβ
22 =

(
µ⋆

α3 −M11
α +

5

2
να0 ταα

)
δαβ −

e2
β

e2
α

N11
αβ,

where M ij
α =

∑
b(ταα/ταb)M

ij
αb,




µ⋆
a1

µ⋆
a2

µ⋆
a3


 =

τaa

na

8π

3

∫ ∞

0

f ⋆
ta

f⋆
ca

νD
a (v)

v4

v2
a




1

v2/v2
a − 5/2

(v2/v2
a − 5/2)2


 fa0 dv,

and the matrix elements M ij
ab and N ij

ab are given by [2]

na

τab

M ij
ab =

∫
v∥L

3/2
i

(
v2

v2
a

)
Cab

[
2v∥
v2

a

L
3/2
j

(
v2

v2
a

)
fa0, fb0

]
dv,

na

τab

N ij
ab =

∫
v∥L

3/2
i

(
v2

v2
a

)
Cab

[
fa0,

2v∥
v2

b

L
3/2
j

(
v2

v2
b

)
fb0

]
dv

with the associate Laguerre polynomials L
3/2
j (v2/v2

a) of order 3/2.

Equations (6) and (7) can be solved by expanding the functions K
(k)
sa (v) and Kh(v) in

the series of the associated Laguerre polynomials of order 3/2. Truncation after only first

two terms in the expansion yields sufficient accuracy for the calculation of the parallel

flows ⟨Bnau
(k)
∥a ⟩ and ⟨Bq

(k)
∥a ⟩. Then the ion flows ⟨Bnαu

(k)
∥α ⟩ and ⟨Bq

(k)
∥α ⟩ are obtained by

solving the following simultaneous linear equations

∑

β

′

 Lαβ

11 Lαβ
12

Lαβ
21 Lαβ

22


 Uβ = −eαnα

mα

⟨B2⟩ ταα


 c1 c2

0 2
5


 ,
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where

c1 = 1− Zα

De

(
µ⋆

e3 +
3

2
µ⋆

e2 +
√

2 + Z̄ +
5

2
νe0 τee

)

and c2 = 5(µ⋆
e2 + 3µ⋆

e1/2 + 3νe0τee/2)/2 with De = (µ⋆
e1 + Z̄ + νe0 τee)(µ

⋆
e3 +

√
2 + 13Z̄/4 +

5 νe0 τee/2)− (µ⋆
e2 − 3Z̄/2)2 and the effective charge Z̄ =

∑
α
′nαZ2

α/ne.

The first-two-terms approximation in the series expansions for the functions K
(k)
sa (v)

and Kh(v) is appropriate for calculating the low velocity moments of these functions.

However, more accurate functions K
(k)
sa (v) and Kh(v) are generally required for calculating

the integrals involving the source terms Sa in (8). For this purpose we use the functions

K
(k)
sa (v) and Kh(v) obtained by taking sufficient large expansion terms. In addition, we

must evaluate the functions ga for these integrals including sources. The equation (5) for ga

can be solved analytically for restricted asymptotic regimes. For general toroidal plasmas

this equation is solved using numerical codes, for example, the Drift Kinetic Equation

Solver (DKES).

The parallel ion flow for a single ion species plasma has the simple form. Multiplying

Eq.(8) by tUa and noticing the relation

tUα


 Lαα

11 Lαα
12

Lαα
21 Lαα

22


 = −eαnα

mα

⟨B2⟩ ταα


 c1 0

c2
2
5


 ,

we find

⟨Bnαu∥α⟩ = − 1

c1

Tα

eα

{
⟨
∫

dv Sα
f

(0)
sα

fα0

⟩+
Te

Tα

⟨
∫

dv Se
he

fe0

⟩
}

,

where we have used Lαα
12 = Lαα

21 . This expression is equivalent to that obtained in [4].

Let us assume that the source terms can be approximated by the parallel momentum

sources, i.e., Sa ≃ [B⟨BS1
a⟩/⟨B2⟩](v∥fa0/naTa). Then our formulation reduces to the con-

ventional neoclassical transport theory in the presence of the parallel momentum sources.

Finally we note that the ion flow velocity is expressed from the momentum balance

equation as

uα =
B ⟨Bu∥α⟩
⟨B2⟩ b +

c

eαnαmαB
b× S1

⊥α,

where S1
⊥α is the perpendicular momentum source.
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