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Neoclassical theory of plasma rotation due to internal and
external sources
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A method for calculating the plasma rotation velocity caused by the effect of fluctua-
tions due to instabilities and/or by externally imposed sources is presented for multiple
ion species plasmas in a general toroidal magnetic field. We assume that the distribu-
tion function is perturbed from the Maxwell distribution function f,o by the presence of
sources. Then we start with the following drift kinetic equation for a perturbed distribu-

tion function f,; for species a:
fal anb falafbl) Sa+La

with V = [yb + @' (p)B x Vp/(B*)] -V —v(1 — £)/(2B*) B - VB9/9¢, where b =
B/B; vy = b-v; £ = v)/v; ®(p) is the electrostatic potential; the constant p labels
a magnetic surface; (-) denotes the flux-surface average; and S, and L, represent the
source term driving plasma rotation and the loss term. In this formulation we use an

approximate momentum-conserving form [1] for the linearized Fokker-Planck collision

Operator Cab(fab fbl) = Cab(fal; fb()) + Cab(faO; fbl):
Cap(fa1, for) = vy (0) L(far) + & [ o(fars for) + Vg (V) ;1] + Po(6) ACuw(fi1s f1),

where Cop(P(8)@a(v), Pi(§)(v)) = Fi(§)Cq(a(v), 03(v)); Fi(€) is the Legendre poly-
nomials; f1, = (I+1/2) [1, Pi(&) fudé; ACu(f2, f2) = C2,(f24, f3) + 3vh () f4; L is
the pitch-angle scattering operator; and v%(v) is the deflection collision frequency. We
further approximate the collision operator C? (f%, f2) by the energy-dependent Krook
term [2] —vL (v) 2. The collision term P,(£)AC,;, can be neglected in the low collisional-
ity regime although it should be retained in th collisional (Pfirsch-Schliiter) regime. We
model the loss term by an external drag with characteristic frequency v,o in the form:
Lo = —vg & fL. Tt is noted here that the suffixes with the Roman indices a and b represent
the electron and ion species, and those with the Greek indices «, 3 and v represent only
ion species.

Let us introduce the following auxiliary equations:
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and
V<hfe)+ce(h’e)_P2(€)I;Z<U)hi_yeoghi = _52 se ) ) )+Vea( )fs(g)l} ’ (2)

where C(he) = E[C, (he, he) + v (0)he] + v (v) £ (he); Ua(v) = vee (v) = 3vgg (v); v (v) =
S vEw); v (v) = 30, 7L (v); Do) means the summation only over ions; and e, = Z,e,
mg, T, and v, = \/m are the charge, the mass , the temperature and the thermal
velocity for species a.

The solutions to the equations (1) and (2) can be written in the form [3]:

* 1 1 vPv)

I =~ 75w o 10 () G (3)
he = é?)%”;e(:’) Kn(v) e (4)

with ” )
 _ Valv) 1 3
fca - Vaa <B2> 5 <B/1d££ga>’

where K& (v) = (BfS"Y | Kp(v) = ( BRL), vay, = 4mnye2e2nA/(m2v3); ny is the number

density, and g, is the solution to the kinetic equation with the pitch-angle-scattering and

Krook collision terms:

V(ga) + v (v) L (9a) — Po(E)75 ()97 = Vaa BE. (5)

Using the relations f&' = BK® /(B?) and hl = BK,/(B?), we find the functions
K(k)( ) and K} (v) to satisfy the equations

2
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where fr, =1— fr.

Noting the relation
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we can obtain the simultaneous linear equations for the parallel ion flows (Bnauje) =

(B/dvv”fal) and (Bq|a) = (B/dvv||(mav2/2 —5T%0/2) for):

{
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where 7, = (4/3v/T)Vap; (Bnau‘(@)} = (B/dvv||f§§)), <Bqﬁ?> = (B/d'vv(mavz/2 —
5T./2)f)), and

0o (Bnauﬁ?) <Bnau‘(‘1a))
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The coefficients L%ﬂ in (8) are defined by

Ly = (uiy = ML + Voo Taa) dag — e—NS%,
2 [0
LY = (g + M) a5 + —NS};,

a
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L8 = (uia+ M) Gus + 2N,
2
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where M = Zb(Taa/Tab)M;]m

MZl 8 0 f* 4 1
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Mo | =53 ), E% (v) 2 v?/v2 — 5/2 fao dv,
s (v?/vi — 5/2)?

and the matrix elements M7 and NI are given by [2]

Ng 19 2U

—M3 = /v||L3/2 < 2) Cab [ 2” L3/2 ( > faOabe]
Tab Ua Ua

Na i 2v

—NY9 = /U”Lg/2 < ) b |:fa07 HL3/2 ( ) be]
Tab Ua

with the associate Laguerre polynomials L3/ ?(v2/v2) of order 3/2.

Equations (6) and (7) can be solved by expanding the functions K% (v) and Kj(v) in
the series of the associated Laguerre polynomials of order 3/2. Truncation after only first
two terms in the expansion yields sufficient accuracy for the calculation of the parallel
flows (Bna ) and (Bq” > Then the ion flows (Bnauﬁ?) and (Bqﬁ?} are obtained by

solving the followmg simultaneous linear equations
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where

2 :1_%: ( :3+§u:2+ﬁ+2+§uem)
and ¢y = 5(p¥y + 3%, /2 + 3Ue0Tee /2) /2 With Do = (1) + Z + veo Tee) (1153 + V2 + 137 /4 +
5Ve0 Tee/2) — (11255 — 37 /2)% and the effective charge Z = Y "o Z2/ne.

The first-two-terms approximation in the series expansions for the functions K (v)
and Kj(v) is appropriate for calculating the low velocity moments of these functions.
However, more accurate functions K% (v) and K} (v) are generally required for calculating
the integrals involving the source terms S, in (8). For this purpose we use the functions
KW (v) and Kj(v) obtained by taking sufficient large expansion terms. In addition, we
must evaluate the functions g, for these integrals including sources. The equation (5) for g,
can be solved analytically for restricted asymptotic regimes. For general toroidal plasmas
this equation is solved using numerical codes, for example, the Drift Kinetic Equation
Solver (DKES).

The parallel ion flow for a single ion species plasma has the simple form. Multiplying

Eq.(8) by 'U, and noticing the relation

ax ax
¢ LIy L% €alla | 2 ¢ 0
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2 )
Lsy Lgs ma ¢ 2

we find

1T 0T h
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where we have used L$ = L§%. This expression is equivalent to that obtained in [4].
Let us assume that the source terms can be approximated by the parallel momentum

sources, i.e., S, > [B(BS1)/(B*)](v) fao/1aT,). Then our formulation reduces to the con-

ventional neoclassical transport theory in the presence of the parallel momentum sources.
Finally we note that the ion flow velocity is expressed from the momentum balance

equation as

B (Bujja)
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where S, is the perpendicular momentum source.
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