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Introduction

The high (H) confinement mode in tokamaks arises when, fdicgrit heating powe} 4,
a transport barrier emerges near the last closed magnefacsuwhich has the character of a
bifurcation exhibiting hysteresis in the heat transpdre (back-transition to the low (L) con-
finement mode happens at a lower heating power than. The limited range of available
guantitative experimental tests cannot discriminate betwthe many proposed models. Instead
we use bifurcation theory to examine the transition charastics of the L-H transition, such as
hysteresis and dithering.

L-H transition characteristics of a simplified transport model

The degree of confinement is determined by the 1-dimensi@ul transport along the
minor radius of the tokamak (assuming a slab geometry), ichwie particle flux is governed
by some effective particle diffusion due to the anomaloasgport driven by turbulence. The
heat transport has two contributions, one is the effectat bonduction and one is the advection
due to the particle flux:
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A change from low confinement to high confinement can theegier described by a decrease
in the anomalous transport coefficients; particle diffugj\D, and heat conductivity.

The anomalous turbulent transport can be significantlygedwue to flows in the plasma,
because these flows tear apart turbulent eddies into sroaker3]. There are quite some differ-
ent physical effects influencing the flow in a plasma, the neffeect is probably due to electric
fields [4] which, in combination with the always present matgmfield, drives ank x B)-drift.

So a radial electric field induces a poloidal flow in the plasmich will reduce the radial
extend of the turbulent eddies and therefore also the ré@iasport even down to neoclassi-

cal levels. The dependence of the transport coefficienth@maormalized radial electric field,
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Z= =T is indicated in Figure 1b. For the evolution of the radialattic field we follow
[1,2,4]: ,
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wherey is a viscosity causing the radial transport of poloidal motam, y is a factor of order
unity indicating the relative influence of the neoclassmattributions of the temperature and



38" EPS Conference on Plasma Physics (2011) P5.131

G(2)

Figure 1:a) Taylor expansion of any nonlinear self-interaction @ tadial electric fieldG = a+ bz + Z2.

b) The dependence of the transport coefficients (partidfesivity, D, and heat conductivityy) on the
normalized radial electric fiel&. However, neither the exact shape of the curve is impontamtthe relative
sizes of the minima and maxima as long as there is some sigmifitifference between the minimum and
maximum values and that the transition occurs for both praricoefficients around the same valueZof

density gradients to the plasma rotati@(Z) = a+ bZ + Z3, but can be any kind of nonlin-
ear function of the radial electric field with the local proyeas indicated in Figure 1a, with
dimensionless constaresandb. The timescale for the electric field evolution is set by the p
rametere ~ ﬁ(Q(l), with Q; the ion cyclotron frequency. Due to the magnitude of the ion
cyclotron frequency, both terms of equation (3) propowido the inverse of it can mostly be
neglected except for sudden jumps in time, at which the tierevdtive ofZ becomes large, and
sudden jumps in space where the spatial derivatives becopartant. This last term must be
taken into account right at the position of the transitiotwsen the normal L-mode transport
in the core of the plasma and the reduced transport in the eaggport barrier (i.e. H-mode
transport). The spatial region under consideration mustonsiderably larger than the size of
the transport barrier to exclude boundary effects, but lsemalugh that the core boundary stays
away from the particle and heat sources in the core of thenaa$he outer edge of the plasma
at the scrape-off layer side is fixedrat 0. The inner boundary of the considered spatial region
is located ar = —oo, this is allowed because compared to the size of the tranbpater the
inner boundary is very far away. The following boundary atinds can therefore be assumed:
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with constant gradient lengthlss and A, at the edge of the plasma, and constant flukgge
anddcore, arriving from the core of the plasma. In steady state these ftuxes are constant
over the entire spatial region, so they must additionallyamahe boundary conditions at the
edge. So the edge steady state of the plasma is restricted to:

D
1+

2) 3MGrehy 1

2 COcore 1+ yﬁ

- —6G(2) with 6 = ()

An
A

WIN [ —
Ol
3

The control parameted dictates the state of the edge plasma, as visualized in Fig. Zart

a) the hysteresis behaviour is obvious becafisg; # 64_.. The size of the hysteresis can be
varied, for instance due to the change of thgarameter, untib._y = 64— (see parb)) and
only smooth transitions are left.
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Figure 2:a) Visualization of stationary solution of edge boundarye ®olid curve represents the LHS
of equation (5), and the dashed line represents the RHS aftiequ(5). The intersection of the two lines
dictates the stationary state (L-mode or H-mode) at the edigee plasma and depends on the slofge,
which is therefore one of the control parameters for the lratgition. b) The two fold bifurcation, causing
a jump to and from the H-mode at a slopefpf 1y and 64| respectively, merge into a cusp bifurcation.

L-H transitions: a new approach

The L-H transition characteristics in the considered tpansmodel found with the analysis
from the previous section, could be found much easier ane momplete with the use of bi-
furcation theory. Bifurcation theory is the analysis of atgmgical changes in the behaviour of
dynamical systems. All general L-H transition characterssare recognized as such topological
changes. (I) The sharp transition from L-mode to H-mode wdémeshold value of the input
power is reached, corresponds to the disappearance ofi@satgtstate of the fusion plasma
(L-mode) such that the system must immediately transit tevastationary state (H-mode), see
the red curve in Fig. 3. This disappearance of a stationatg sf a dynamical system is called a
fold bifurcation. (II) The sharp back transition from the H-mode back to theade occurs at a
lower threshold value of the input power (orange curve in B)gthis hysteresis behaviour cor-
responds to two different fold bifurcations in the dynarhgystem. The point from which these
two fold bifurcations start to appear is
called acusp bifurcation. (llI) Under some |
plasma conditions oscillatory behaviour i
observed before the system settles into tl
H-mode, these are called 'Dithering’ tran
sitions. These oscillations, occuring in th
green area of Fig. 3, correspond to limit cy-
cle solutions of the dynamical system occur
ring due to aHopf bifurcation. s .

If these three bifurcations are present in e, e B
a certain dynamical model it automatically Figure 3:Left: Cusp bifurcation in the edgeT
implies that all the L-H transition character-
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as a function of two control parameters (e.g. fric-
Istics are present. Fortunately' these three blTion with neutrals and input power). Whether the L-

furcations are additionally organized by an- H transition exhibits hysteresis (top right) or oscil-
other bifurcation, a so-callebifurcation of

co-dimension 3. At this point in parameter

lations (dithering, bottom right), depends on e.g. the

relative effects of heat and patrticle transport.
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space all three bifurcations (i.e. two folds and one Hopidilgdition) merge together; therefore
it is sufficient to determine the presence of this specialrbétion of co-dimension 3 to prove
that all the essential transition characteristics aregmies the model. The transition criteria
described in Fig. 2a indeed correspond to two different bafldrcations of the entire dynamical
system evaluated at the edge of the plasma, see eq. (6). Wedeld bifurcations merging
together in Fig. 2b correspond to the cusp bifurcation, ge€/¢. The most important benefit of
using bifurcation theory is that we found the intersectibthes cusp bifurcation with the Hopf
bifurcation constructing the organizing center of all trensition characteristics (hysteresis and
dithering) of this model, namely the co-dimension 3 bifuia
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Conclusion

By finding the co-dimension 3 bifurcation (eqs. 6-8) in thegpaeter space of the transport
model (egs. 1-3) it can immediately be concluded that aéiregs transition characteristics are
present in this model. Additionally, the exact form of theHLeontrol parametef indicates
that not only increasing the heat flux brings the edge statbeofystem towards H-mode, but
also other plasma parameters can be used to control the &rHition, e.g. particle flux and the
gradient lengths. Furthermore, the co-dimension 3 bitizoan this transport model dictates
that for some plasma conditions oscillatory L-H transionust occur. As indicated by the
green area in Fig. 3 which covers the cusp bifurcation, sbhahih the dither regime the cusp
type behaviour cannot be observed anymore. This is indeefirt@d by the analysis of the
limit case wherey becomes very small, in which only oscillatory solutions whéund at
the transition from L-mode to H-mode [2]. Physically thisi@sponds to the limit where the
temperature gradient does not have much influence on thatewobf the radial electric field
and the dynamics is dominated by the density gradient. \@sgay it can be concluded that the
temperature gradient and heat flux influence on the radietreddield are essentially necessary
for the sharp forward and backward transitions and the hgsigebehaviour.
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