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Introduction

The high (H) confinement mode in tokamaks arises when, for sufficient heating power,PLH,

a transport barrier emerges near the last closed magnetic surface, which has the character of a

bifurcation exhibiting hysteresis in the heat transport (the back-transition to the low (L) con-

finement mode happens at a lower heating power thanPLH). The limited range of available

quantitative experimental tests cannot discriminate between the many proposed models. Instead

we use bifurcation theory to examine the transition characteristics of the L-H transition, such as

hysteresis and dithering.

L-H transition characteristics of a simplified transport model

The degree of confinement is determined by the 1-dimensionalradial transport along the

minor radius of the tokamak (assuming a slab geometry), in which the particle flux is governed

by some effective particle diffusion due to the anomalous transport driven by turbulence. The

heat transport has two contributions, one is the effective heat conduction and one is the advection

due to the particle flux:
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A change from low confinement to high confinement can therefore be described by a decrease

in the anomalous transport coefficients; particle diffusivity, D, and heat conductivityχ .

The anomalous turbulent transport can be significantly reduced due to flows in the plasma,

because these flows tear apart turbulent eddies into smallerones [3]. There are quite some differ-

ent physical effects influencing the flow in a plasma, the maineffect is probably due to electric

fields [4] which, in combination with the always present magnetic field, drives an (E×B)-drift.

So a radial electric field induces a poloidal flow in the plasma, which will reduce the radial

extend of the turbulent eddies and therefore also the radialtransport even down to neoclassi-

cal levels. The dependence of the transport coefficients on the normalized radial electric field,

Z =
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, is indicated in Figure 1b. For the evolution of the radial electric field we follow

[1,2,4]:
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whereµ is a viscosity causing the radial transport of poloidal momentum,γ is a factor of order

unity indicating the relative influence of the neoclassicalcontributions of the temperature and
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Figure 1:a) Taylor expansion of any nonlinear self-interaction of the radial electric field:G = a+bZ +Z3.

b) The dependence of the transport coefficients (particle diffusivity, D, and heat conductivity,χ) on the

normalized radial electric field,Z. However, neither the exact shape of the curve is important,nor the relative

sizes of the minima and maxima as long as there is some significant difference between the minimum and

maximum values and that the transition occurs for both transport coefficients around the same value ofZ.

density gradients to the plasma rotation.G(Z) = a + bZ + Z3, but can be any kind of nonlin-

ear function of the radial electric field with the local property as indicated in Figure 1a, with

dimensionless constantsa andb. The timescale for the electric field evolution is set by the pa-

rameterε ∼ O(Ω−1
i ), with Ωi the ion cyclotron frequency. Due to the magnitude of the ion

cyclotron frequency, both terms of equation (3) proportional to the inverse of it can mostly be

neglected except for sudden jumps in time, at which the time derivative ofZ becomes large, and

sudden jumps in space where the spatial derivatives become important. This last term must be

taken into account right at the position of the transition between the normal L-mode transport

in the core of the plasma and the reduced transport in the edgetransport barrier (i.e. H-mode

transport). The spatial region under consideration must beconsiderably larger than the size of

the transport barrier to exclude boundary effects, but small enough that the core boundary stays

away from the particle and heat sources in the core of the plasma. The outer edge of the plasma

at the scrape-off layer side is fixed atr = 0. The inner boundary of the considered spatial region

is located atr = −∞, this is allowed because compared to the size of the transport barrier the

inner boundary is very far away. The following boundary conditions can therefore be assumed:
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with constant gradient lengthsλT andλn at the edge of the plasma, and constant fluxes,Γcore

andqcore, arriving from the core of the plasma. In steady state these core fluxes are constant

over the entire spatial region, so they must additionally match the boundary conditions at the

edge. So the edge steady state of the plasma is restricted to:
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The control parameterθ dictates the state of the edge plasma, as visualized in Fig. 2. In part

a) the hysteresis behaviour is obvious becauseθL−H 6= θH−L. The size of the hysteresis can be

varied, for instance due to the change of theb parameter, untilθL−H = θH−L (see partb)) and

only smooth transitions are left.
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Figure 2:a) Visualization of stationary solution of edge boundary. The solid curve represents the LHS

of equation (5), and the dashed line represents the RHS of equation (5). The intersection of the two lines

dictates the stationary state (L-mode or H-mode) at the edgeof the plasma and depends on the slope,θ ,

which is therefore one of the control parameters for the L-H transition. b) The two fold bifurcation, causing

a jump to and from the H-mode at a slope ofθL−H andθH−L respectively, merge into a cusp bifurcation.

L-H transitions: a new approach

The L-H transition characteristics in the considered transport model found with the analysis

from the previous section, could be found much easier and more complete with the use of bi-

furcation theory. Bifurcation theory is the analysis of topological changes in the behaviour of

dynamical systems. All general L-H transition characteristics are recognized as such topological

changes. (I) The sharp transition from L-mode to H-mode whena threshold value of the input

power is reached, corresponds to the disappearance of a stationary state of the fusion plasma

(L-mode) such that the system must immediately transit to a new stationary state (H-mode), see

the red curve in Fig. 3. This disappearance of a stationary state of a dynamical system is called a

fold bifurcation. (II) The sharp back transition from the H-mode back to the L-mode occurs at a

lower threshold value of the input power (orange curve in Fig. 3), this hysteresis behaviour cor-

responds to two different fold bifurcations in the dynamical system. The point from which these

Figure 3:Left: Cusp bifurcation in the edge∇T

as a function of two control parameters (e.g. fric-

tion with neutrals and input power). Whether the L-

H transition exhibits hysteresis (top right) or oscil-

lations (dithering, bottom right), depends on e.g. the

relative effects of heat and particle transport.

two fold bifurcations start to appear is

called acusp bifurcation. (III) Under some

plasma conditions oscillatory behaviour is

observed before the system settles into the

H-mode, these are called ’Dithering’ tran-

sitions. These oscillations, occuring in the

green area of Fig. 3, correspond to limit cy-

cle solutions of the dynamical system occur-

ring due to aHopf bifurcation.

If these three bifurcations are present in

a certain dynamical model it automatically

implies that all the L-H transition character-

istics are present. Fortunately, these three bi-

furcations are additionally organized by an-

other bifurcation, a so-calledbifurcation of

co-dimension 3. At this point in parameter
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space all three bifurcations (i.e. two folds and one Hopf bifurcation) merge together; therefore

it is sufficient to determine the presence of this special bifurcation of co-dimension 3 to prove

that all the essential transition characteristics are present in the model. The transition criteria

described in Fig. 2a indeed correspond to two different foldbifurcations of the entire dynamical

system evaluated at the edge of the plasma, see eq. (6). Thesetwo fold bifurcations merging

together in Fig. 2b correspond to the cusp bifurcation, see eq. (7). The most important benefit of

using bifurcation theory is that we found the intersection of this cusp bifurcation with the Hopf

bifurcation constructing the organizing center of all the transition characteristics (hysteresis and

dithering) of this model, namely the co-dimension 3 bifurcation:
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Conclusion

By finding the co-dimension 3 bifurcation (eqs. 6–8) in the parameter space of the transport

model (eqs. 1–3) it can immediately be concluded that all essential transition characteristics are

present in this model. Additionally, the exact form of the L-H control parameterθ indicates

that not only increasing the heat flux brings the edge state ofthe system towards H-mode, but

also other plasma parameters can be used to control the L-H transition, e.g. particle flux and the

gradient lengths. Furthermore, the co-dimension 3 bifurcation in this transport model dictates

that for some plasma conditions oscillatory L-H transitions must occur. As indicated by the

green area in Fig. 3 which covers the cusp bifurcation, such that in the dither regime the cusp

type behaviour cannot be observed anymore. This is indeed confirmed by the analysis of the

limit case whereγ becomes very small, in which only oscillatory solutions where found at

the transition from L-mode to H-mode [2]. Physically this corresponds to the limit where the

temperature gradient does not have much influence on the evolution of the radial electric field

and the dynamics is dominated by the density gradient. Vise versa, it can be concluded that the

temperature gradient and heat flux influence on the radial electric field are essentially necessary

for the sharp forward and backward transitions and the hysteresis behaviour.
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