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Three-dimensional configurations of helical plasmas bring numerical difficulties to gyroki-
netic simulations of plasma turbulent transport in toroidal fusion devices. Watahahdave
investigated the ion-temperature-gradient (ITG)-driven turbulence in helical plasmas by means
of the gyrokinetic Vlasov simulation code GVK [1]. Because of a large number of grid points
along a magnetic field line for resolving particle motions in helical ripples, however, the Courant-
Friedrichs-Lewy (CFL) condition on the parallel advection term as well as the perpendicular
magnetic drift term severely restricts time steps in the linear limit. To address this problem, we
propose an efficient numerical method for linear analysis of instabilities in helical plasmas by
means of gyrokinetid f Vlasov simulations, employing semi-Lagrangian and additive semi-
implicit Runge-Kutta schemes. The new scheme is free from the CFL restrictions for the linear

terms.

Gyrokinetic equations
Employing the flux tube model, the perturbed ion gyrocenter distribution funt[:ﬁi((zwﬂ )
is represented in the perpendicular wave number skaecéky, ky). The linearized gyrokinetic

Vlasov equation forfy in the electrostatic limit is given by
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whereB, my, e, Ry, Ti, ay, andw, are the magnetic field strength, ion mass, elementary charge,
Maxwellian distribution function, ion temperature, magnetic and diamagnetic drift frequencies,
respectively. The parallel velocity; and the magnetic momeptare employed as the velocity
space coordinates. The parallel gradient is writteriJas= (1/doRo)d;, whereqp, Ry, andz

are the safety factor, major radius, and field-aligned coordinate, respectively. The gyrocenter
electrostatic potentiay is related to the electrostatic potentglby @, = Jo(k | 0;) ¢, whereJy

andp; are the zeroth-order Bessel function and ion Larmor radius, respectively. The electrostatic
potential is determined by the quasi-neutrality condition with an adiabatic electron response. We

employ the gyrophase-averaged Lenard-Bernstein operator as the collision opérator
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The magnetic field strength in a large-aspect-ratio helical plasma is approximated as

I=L+1
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whereL andM are the poloidal and toroidal period numbers of the main component of the
helical field. Here, we choose the field line labeloot= 0. The parametersgy, &, & and& +1
correspond to the averaged magnetic hill/well, toroidicity, main helical field and two sideband

components, respectively [1].

Hybrid method of semi-Lagrangian and additive semi-implicit Runge-Kutta schemes
By means of the operator splitting method [2], Eq. (1) can be split into the parallel motions

and the others:
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whereH = ﬁ/2+ uB/m is the particle kinetic energy per unit mass grfdg} = 0J; foy,g9—
dVH f[J;g denotes the parallel Poisson brackets.

Equation (3) represents the field-aligned advectiofy@haracterized by the parallel particle
motions ofds/dt = {s,H } | with s= (qRyz,v ). We further split Eq. (3) into two linear advection
equations irzandy, i.e, dfy/dt = —v U, fx andd f /ot = (uDHB/m)d\,H fx. Their analytical
solutions arefy(s,t +At) = fx(s— UAt,t), wheres = qRoz or vj andu = v, or —ul};B/m,
and computed by a semi-Lagrangian scheme [3]. Practically, one has to evaluate the value of
fx(s— uAt,t) by using one-dimensional interpolations. For more details, see Ref. [4].

Onthe other hand, Eq. (4) is regarded as an additive operator of the perpendicular drift, source
and collision terms. In order to solve Eq. (4), we employ additive semi-implicit Runge-Kutta
schemes (ASIRK) [5] and treat the magnetic drift term implicitly. Since the coefficient matrix
of the magnetic drift term is diagonal, one can easily compute its semi-implicit time integration

without using matrix solvers.

Parallel dynamics in helical plasmas

The parallel dynamics, Eqg. (3), is computed by a semi-Lagrangian scheme with a second-
order operator splitting method. We employ 19256 grid points and a time step si&e/ty, =
0.1, wheretyy = L/ v with the density scale length, and the ion thermal velocity;. The initial
profile is given byf(zv),t = 0) = Fu(H)(1+ cosz), and the periodic boundary condition is
employed inz. Characteristic curves of the dynamics are given as contour lines of the particle

Kinetic energyH, as shown in Fig. 1 (a). There are trajectories of helical-ripple-trapped particles
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Figure 1: (a) Contour lines of the particle kinetic enekgvith the helical field of Eqg. (2), and
(b)-(d) snapshots of equi-contours of the distribution functi¢nv;) in parallel phase space
(whereL=2,M =10,qo=1.7,600=0,& =0.087,¢,_1=-0.74,¢, = 1.2, .1 = —0.24 and

UBo/T; = 4.0). Horizontal and vertical axes are definedzmndy, respectively.

as well as those of passing particles. Snapshots of the contour lines of the distribution functions
are shown in Fig. 1 (b)-(d). The distribution function is advected along the contour lines of the
particle kinetic energy. While passing particles elongate the profile, trapped particles stay in the
trapped regions. Thus, fine-scale structures appear at the trapped-passing boundary.

To estimate the temporal accuracy, we calculate
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solution fir‘]-‘f is computed with higher resolutions Time step size Al

(N =768 N, = 256,At /t;,, = 0.001). Figure 2 plots

Le as a function of the time step size. The de- Figure 2: Norms of errorkg att/ty = 2.0

as a function of the time step si2¢ for
Nz = 192 384 andN, = 256.

pendence of the error has a plateaufoft; < 0.5,
while Lg monotonically increases fdkt /t; > 0.5.
According to the figure, the presented scheme is accurate to the second order in time, as ex-
pected. It is found that the temporal errors dominate when the time step size is comparable to
the transit time of passing particles through one helical rigme At ~ Lyip /Vjmax ~ 0.4ty for

the parameters employed here.

Linear ion-temperature-gradient instabilities in helical plasmas
Employing the hybrid method of semi-Lagrangian and additive semi-implicit Runge-Kutta
schemes (SLASIRK), we have carried out linear ITG simulations of a helical plasma. Physical

and numerical settings are the same as those for the inward-shifted LHD case shown in Ref. [1].
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Figure 3: (a) Linear growth rateg and (b) real frequenciesy as a function of the poloidal
wave numbekypti. The solid, dashed and dotted lines represent the results obtained by RKG
with At /ty = 0.005 and SLASIRK witht /t; = 0.1,0.4, respectively.

The linear growth rates and the real frequencies are plotted as a function of the poloidal
wave numbeky in Fig. 3. The results agree well with the results obtained by using the fourth-
order Runge-Kutta-Gill scheme (RKG), while taking the time step size larger than that of RKG.
The presented numerical method gives sufficiently accurate resulfs fr < 0.4, which is

comparable to the transit time of passing particles through one helical ripple.

Summary

A new method for solving gyrokinetic equation in a flux tube geometry is developed. First,
we have applied the semi-Lagrangian scheme to the parallel dynamics in helical plasmas. It is
demonstrated that the time step size is free from the CFL conditions and is restricted by a phys-
ical time, i.e,, the transit time through the magnetic ripples. Second, a hybrid method of semi-
Lagrangian and additive semi-implicit Runge-Kutta schemes is applied to linear computations
of the ITG instability in helical plasmas, and confirm that a stable and efficient computation is

possible with time steps much longer than the CFL conditions for all linear terms.
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