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Three-dimensional configurations of helical plasmas bring numerical difficulties to gyroki-

netic simulations of plasma turbulent transport in toroidal fusion devices. Watanabeet al.have

investigated the ion-temperature-gradient (ITG)-driven turbulence in helical plasmas by means

of the gyrokinetic Vlasov simulation code GVK [1]. Because of a large number of grid points

along a magnetic field line for resolving particle motions in helical ripples, however, the Courant-

Friedrichs-Lewy (CFL) condition on the parallel advection term as well as the perpendicular

magnetic drift term severely restricts time steps in the linear limit. To address this problem, we

propose an efficient numerical method for linear analysis of instabilities in helical plasmas by

means of gyrokineticδ f Vlasov simulations, employing semi-Lagrangian and additive semi-

implicit Runge-Kutta schemes. The new scheme is free from the CFL restrictions for the linear

terms.

Gyrokinetic equations

Employing the flux tube model, the perturbed ion gyrocenter distribution functionfkkk(z,v∥,µ)

is represented in the perpendicular wave number spacekkk = (kx,ky). The linearized gyrokinetic

Vlasov equation forfkkk in the electrostatic limit is given by
[

∂
∂ t

+v∥∇∥+ iωd−
µ∇∥B

mi

∂
∂v∥

]
fkkk =−eFM

Ti

[
v∥∇∥+ iωd− iω∗

]
Φkkk +C ( fkkk), (1)

whereB, mi , e, FM , Ti , ωd, andω∗ are the magnetic field strength, ion mass, elementary charge,

Maxwellian distribution function, ion temperature, magnetic and diamagnetic drift frequencies,

respectively. The parallel velocityv∥ and the magnetic momentµ are employed as the velocity

space coordinates. The parallel gradient is written as∇∥ = (1/q0R0)∂z, whereq0, R0, andz

are the safety factor, major radius, and field-aligned coordinate, respectively. The gyrocenter

electrostatic potentialΦkkk is related to the electrostatic potentialφkkk by Φkkk = J0(k⊥ρi)φkkk, whereJ0

andρi are the zeroth-order Bessel function and ion Larmor radius, respectively. The electrostatic

potential is determined by the quasi-neutrality condition with an adiabatic electron response. We

employ the gyrophase-averaged Lenard-Bernstein operator as the collision operatorC .
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The magnetic field strength in a large-aspect-ratio helical plasma is approximated as

B =B0

{
1− ε00− εt cosz−

l=L+1

∑
l=L−1

εl cos[(l −Mq0)z−Mα ]

}
, (2)

whereL andM are the poloidal and toroidal period numbers of the main component of the

helical field. Here, we choose the field line label ofα = 0. The parametersε00, εt, εL andεL±1

correspond to the averaged magnetic hill/well, toroidicity, main helical field and two sideband

components, respectively [1].

Hybrid method of semi-Lagrangian and additive semi-implicit Runge-Kutta schemes

By means of the operator splitting method [2], Eq. (1) can be split into the parallel motions

and the others:

∂ fkkk
∂ t

= {H, fkkk}∥ , (3)

∂ fkkk
∂ t

=−iωd fkkk−
eFM

Ti

[
v∥∇∥+ iωd− iω∗

]
Φkkk +C ( fkkk), (4)

whereH = v2
∥/2+ µB/mi is the particle kinetic energy per unit mass and{ f ,g}∥ = ∇∥ f ∂v∥g−

∂v∥ f ∇∥g denotes the parallel Poisson brackets.

Equation (3) represents the field-aligned advection offkkk characterized by the parallel particle

motions ofds/dt = {s,H}∥ with s= (qR0z,v∥). We further split Eq. (3) into two linear advection

equations inzandv∥, i.e., ∂ fkkk/∂ t =−v∥∇∥ fkkk and∂ fkkk/∂ t = (µ∇∥B/mi)∂v∥ fkkk. Their analytical

solutions arefkkk(s, t + ∆t) = fkkk(s− u∆t, t), wheres = qR0z or v∥ and u = v∥ or −µ∇∥B/mi ,

and computed by a semi-Lagrangian scheme [3]. Practically, one has to evaluate the value of

fkkk(s−u∆t, t) by using one-dimensional interpolations. For more details, see Ref. [4].

On the other hand, Eq. (4) is regarded as an additive operator of the perpendicular drift, source

and collision terms. In order to solve Eq. (4), we employ additive semi-implicit Runge-Kutta

schemes (ASIRK) [5] and treat the magnetic drift term implicitly. Since the coefficient matrix

of the magnetic drift term is diagonal, one can easily compute its semi-implicit time integration

without using matrix solvers.

Parallel dynamics in helical plasmas

The parallel dynamics, Eq. (3), is computed by a semi-Lagrangian scheme with a second-

order operator splitting method. We employ 192×256 grid points and a time step size∆t/ttr =

0.1, wherettr = Ln/vti with the density scale lengthLn and the ion thermal velocityvti .The initial

profile is given byf (z,v∥, t = 0) = FM(H)(1+ cosz), and the periodic boundary condition is

employed inz. Characteristic curves of the dynamics are given as contour lines of the particle

kinetic energyH, as shown in Fig. 1 (a). There are trajectories of helical-ripple-trapped particles
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Figure 1: (a) Contour lines of the particle kinetic energyH with the helical field of Eq. (2), and

(b)-(d) snapshots of equi-contours of the distribution functionf (z,v∥) in parallel phase space

(whereL = 2,M = 10,q0 = 1.7,ε00 = 0,εt = 0.087,εL−1 =−0.74,εL = 1.2,εL+1 =−0.24 and

µB0/Ti = 4.0). Horizontal and vertical axes are defined byzandv∥, respectively.

as well as those of passing particles. Snapshots of the contour lines of the distribution functions

are shown in Fig. 1 (b)-(d). The distribution function is advected along the contour lines of the

particle kinetic energy. While passing particles elongate the profile, trapped particles stay in the

trapped regions. Thus, fine-scale structures appear at the trapped-passing boundary.
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Figure 2: Norms of errorsLE att/ttr = 2.0

as a function of the time step size∆t for

Nz = 192,384 andNv = 256.

To estimate the temporal accuracy, we calculate

the norm of the errorsLE defined by

LE =

√√√√
Nz

∑
i=1

Nv

∑
j=1

∣∣∣ fi, j − f ref
i, j

∣∣∣
2/ Nz

∑
i=1

Nv

∑
j=1

∣∣∣ f ref
i, j

∣∣∣
2
, (5)

whereNz andNv are the number of grid points in

thezandv∥ coordinates, respectively. The reference

solution f ref
i, j is computed with higher resolutions

(Nz = 768,Nv = 256,∆t/ttr = 0.001). Figure 2 plots

LE as a function of the time step size. The∆t de-

pendence of the error has a plateau for∆t/ttr < 0.5,

while LE monotonically increases for∆t/ttr > 0.5.

According to the figure, the presented scheme is accurate to the second order in time, as ex-

pected. It is found that the temporal errors dominate when the time step size is comparable to

the transit time of passing particles through one helical ripple,i.e., ∆t ∼ Lrip/v∥max∼ 0.4ttr for

the parameters employed here.

Linear ion-temperature-gradient instabilities in helical plasmas

Employing the hybrid method of semi-Lagrangian and additive semi-implicit Runge-Kutta

schemes (SLASIRK), we have carried out linear ITG simulations of a helical plasma. Physical

and numerical settings are the same as those for the inward-shifted LHD case shown in Ref. [1].
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Figure 3: (a) Linear growth ratesγl and (b) real frequenciesωr as a function of the poloidal

wave numberkyρti . The solid, dashed and dotted lines represent the results obtained by RKG

with ∆t/ttr = 0.005 and SLASIRK with∆t/ttr = 0.1,0.4, respectively.

The linear growth rates and the real frequencies are plotted as a function of the poloidal

wave numberky in Fig. 3. The results agree well with the results obtained by using the fourth-

order Runge-Kutta-Gill scheme (RKG), while taking the time step size larger than that of RKG.

The presented numerical method gives sufficiently accurate results for∆t/ttr < 0.4, which is

comparable to the transit time of passing particles through one helical ripple.

Summary

A new method for solving gyrokinetic equation in a flux tube geometry is developed. First,

we have applied the semi-Lagrangian scheme to the parallel dynamics in helical plasmas. It is

demonstrated that the time step size is free from the CFL conditions and is restricted by a phys-

ical time, i.e., the transit time through the magnetic ripples. Second, a hybrid method of semi-

Lagrangian and additive semi-implicit Runge-Kutta schemes is applied to linear computations

of the ITG instability in helical plasmas, and confirm that a stable and efficient computation is

possible with time steps much longer than the CFL conditions for all linear terms.
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