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The MHD_NX code computes the ideal MHD stability of plasma equilibrium configurations
with arbitrary topology of magnetic surfaces, including doublets, reversed current tokamak con-
figurations with magnetic islands (current holes and AC operation) and multi-connected plasmas
like two separated plasma columns (droplet) surrounded by a vacuum region and a conducting
wall [1–5]. The code uses unstructured triangular grids with a possibility of adaptation to the
magnetic surfaces and sharp solution features.

The formulation of equilibrium and ideal MHD stability problems with helical symmetry
allows one to model configurations with single helicity magnetic islands. The results of the
modeling related to tokamak stability in the presence of islands, the ways to improve the nu-
merical approximation of the ideal MHD condition E ·B = 0 and adaptive gridding in ideal
MHD stability problems are discussed.

1 Helically symmetric equilibria
A simple model for single helicity islands in tokamak is a helically symmetric equilibrium in

which boundary perturbations give rise to magnetic islands. The helical flux function ψh can be
found as a solution of the generalized Grad-Shafranov equation [6]:
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The equilibrium magnetic field B⃗ = (∇ψh× e3 + f e3)/g33 is represented using the curvilinear
coordinates (x1,x2,x3) = (u,v,z) with the corresponding covariant vectors ek = ∂ r⃗/∂xk and
contravariant ek = ∇xk vectors. The (u,v) = (r cosθh,r sinθh) plane is rotating about the origin
according to the polar coordinate transformation (r,θ) into (r,θh = θ − κz), where the helix
pitch is 2π/κ . The metric tensor of the chosen coordinate system (u,v,z) is as follows:
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The Jacobian of the coordinate system is detgik = 1.
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2 Ideal MHD stability: the problem formulation for helical symmetry
For the stability analysis the potential and kinetic energy functionals can be expressed in

terms of the electric field perturbation E⃗ = iω e⃗, e⃗ =−ξ⃗ × B⃗ (time dependence eiωt is assumed
for the eigenvalue problem):
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combined with the requirement (⃗e · B⃗) = 0. The surrounding vacuum region (free boundary) can
also be taken into account (see [1]).

For the force-free case the last term in the functional (3) vanishes because j⃗ = j⃗|| + B⃗×
∇p/B2, j⃗|| = ( j⃗ · B⃗)/B2B⃗, so that j⃗ · e⃗ = 0 for ∇p = 0. In this paper we consider only force-free
helical equilibria.

The approach to approximate and solve the stability problem on triangular grids is the same
as for the axisymmetric plasmas [3] but with the basis functions defined on an unstructured grid
in the (u,v) plane and with the unknown vector represented as e⃗ = ez∇z+ e⃗pol .

For the harmonics einhz⃗en the ∇× operator writes:

∇× e⃗ = einhz(∇en,z×∇z+ inh∇z× e⃗n,pol +∇× e⃗n,pol).

Let us note that the coordinate system (u,v,z) is not orthogonal, so some additional terms
need to be taken into account compared to the case of toroidal symmetry.

For n ̸= 0 the harmonic amplitude e⃗n becomes complex and a complex matrix solver is
needed. In the MHD_NX code the direct solver from the PETSc package is used, which is
available both in real and complex versions.

3 Numerical results
A standard simple model for tokamak in the limit of large aspect ratio is one dimensional

circular cylinder equilibrium with the safety factor q = rBz/RBθ , where a is the minor radius of
plasma, 0 < z < 2πR, R is the major radius of an equivalent torus with aspect ratio R/a ≫ 1.

Exact stability criterion is known for the circular cylinder with piece-wise constant current
density [7]:

jz(r) = J1 + J2, 0 ≤ r ≤ a0, jz(r) = J2, a0 ≤ r ≤ a. (5)

It gives the profile of the rotational transform ι = 1/q with the values ι0 = (J1 + J2)/2 and
ιa = (J1(a0/a)2 + J2)/2 at the magnetic axis and the plasma boundary, respectively.

Assuming a conducting wall at infinity, for the poloidal and toroidal wave numbers m and n

the criterion of the external kink mode instability with mιa > n is given by the inequality:

(mιa−n− J2/2)(mι0−n− J1/2)− J1J2(a0/a)2m/4 < 0. (6)
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For modeling the reference configuration is chosen with (a0/a)2 = 0.6,q0 = 1.2,qa = 1.8
that corresponds to the following values of the constants J1 = 1.39,J2 = 0.2J1 = 0.278. It is
strongly unstable against the mode m/n = 2/1. The minor radius value was set to a = 0.1 with
the major radius R = 1 and magnetic field Bz = 1 to satisfy the limit of large aspect ratio.

The same cylindrically symmetric equilibrium can be described by the equilibrium equation
(1) with arbitrary choice of κ . This can be taken e.g. as κ = 0 (cylinder case) or with some
Rκ = nz/nθ corresponding to a resonant value q = nθ/nz of the safety factor inside the plasma.
In the large aspect ratio limit the helical flux ψh = ψcyl −Bzκ(a2− r2)/2 gives ∇ψh = 0 at the
resonant magnetic surface q = 1/(Rκ). For the Rκ = 2/3 the rational surface q = 1.5 becomes
topologically unstable under perturbations of the plasma boundary given in the (u,v) plane
(level lines of the solution (1) are shown in Fig.1a). Elongation of the plasma cross-section
gives rise to the m = 2 magnetic islands (Fig.1b).
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Fig.1. Helical flux level lines for 1D
circular cylinder (a) and 2D case
with plasma cross section elonga-
tion E = 1.2 (b). Black lines shows
the delimiting line passing through
the point (a0/a)2 = 0.6.

Let us note that choosing different values of R does not change the solution for the cylindrical
flux ψcyl under fixed jz profile but do modify the helical flux under chosen constant Bz and
Rκ . It corresponds to the change of flux through the helical surface in the equivalent tori with
different major radii. On the other hand, it provides a series of equivalent equilibria to test both
equilibrium and stability codes in one-dimensional cylindrical case.

The solution of the helical equilibrium equation is obtained using the Matlab pdetool toolbox.
In case of the two step current density profile (5) under approximation that in the last term of
(1) f = const the procedure is as follows: the boundary of the plasma in the (u,v) plane is
analytically prescribed as an ellipse with chosen elongation, a triangular unstructured grid is
generated by the prescribed grid edge length inside the boundary, pdenonlin with user defined
right hand side is employed to solve the nonlinear equation. The main nonlinearity is in the
mapping of the "delimiting" line ψh = ψh0 with the value of ψh0 determined in the middle of
the mesh cell closest to the prescribed limiter point at (u,v) = (a0,0) (Fig.1b). Then the value
of the two-step current density j3 = f f ′ at the grid is determined by the local value of ψh. The
computed equilibria and the position of the delimiting line are shown in Fig.1.

The stability computations were performed with the MHD_NX code modified for the force-
free helical symmetry geometry. Fig.2 shows the comparison of the results of the test computa-
tions of the external m = 2 mode growth rates for different values of nqa in the straight cylinder,
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where n is "toroidal" wave number for the harmonic einz/R. Let us note that in the helical case
several cylindrical modes can become unstable for a single chosen wave number nh because of
coupling of the resonant modes with different resonant toroidal wave numbers n through the
helicity of the coordinate system. Moreover, the correspondence between the helical and cylin-
drical wave numbers needs to be taken into account: nh = n/R−mκ to trace the chosen mode in
the helical spectrum. The growth rates of the external kink modes in the equilibria with m = 2
islands with Rκ = 2/3 helicity are just slightly modified. However the nh = 0 modes become
unstable once the islands open (Fig.3).
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Fig.2. Straight cylinder test: the external m = 2
mode growth rates numerically reproduced for
conventional (blue) and "helical" (green) config-
uratons with conducting wall at rw = 2a. Total
number of grid nodes is N = 4600.
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Fig.3. External n = 1 kink mode structure for
the helical equilibrium with the elongation E =
1.5: ω2 = −0.0183 (a). Unstable modes with
nh = 0: ω2 =−0.0299 (multiplicity 2) (b), ω2 =
−0.0122 (c). Total number of nodes N = 28471.
The contour plots of ez = ξ⃗ ·∇ψh and the stream-
lines for e⃗pol are shown.

4 Discussion
The formulations of equilibrium and ideal MHD stability problems on unstructured grids for

plasmas with helical symmetry were developed. Helically symmetric equilibria equivalent to
cylindrically symmetric configurations and with magnetic islands induced by helical plasma
boundary shaping were computed. The helically symmetric plasma option was implemented
into the MHD_NX ideal stability code. Test calculations of cylindrically symmetric plasma
stability in different coordinate systems were performed for the constant and two-step current
density profile configurations in the cylinder. The ideal stability calculations with helical mag-
netic islands displayed a weak influence of the islands on the external kink mode stability, but
revealed a family of the two-dimensional instabilities winding with the equilibrium islands (he-
lical wave number nh = 0).
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