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Physical model

Figure 1: 3 bags MWB distribution

and reference Maxwellian

The physical system under study (see e.g [1] or [2]) is a

cylindrical plasma column, magnetized by an axis aligned

constant magnetic field. Ion dynamics is described by

the Vlasov gyrokinetic equation in the low larmor radius

limit. Electrons are assumed "adiabatic". Closure is pro-

vided by the quasi-neutrality equation with polarization

drift. Multi-Water-Bag (Figure 1) reduction consists in

considering an ion parallel velocity distribution function

of the form :

f (r,v‖, t) =
N

∑
j=−N

j 6=0

A jH
(
v j(r, t)− v‖

)
(1)

where H is the Heaviside function, A j( j = 1..N) are constant positive weights and A− j =−A j.

Space and time variations of the distribution function thus occur only through variation of

the scalar fields v j, defining the contours of the so-called "Water-bags". Taking into ac-

count symmetries of the initial equilibrium, the contours are decomposed as a sum v j(r, t) =

Vj(r)+ w j(r,θ ,z, t) of respectively 0th and 1st order fields. The radial enveloppe of the (m,n)

Fourier mode of the Liouville transformed perturbed electric potential ψm,nω =
√

rn0φm,n,ω is

then solution of the generalized Sturm-Liouville problem :

[
− d2

dr2 +Q(ω)
]

ψm,n,ω = 0 with





Q(ω) = B(r)+F(ω)

B(r) =
(m

r

)2 + 1
ZiTe(r)

+ 1
4 (drln(rn0))

2 + 1
2 d2

rln(rn0)

F(ω) =−∑
j

A j
n0

nk‖−m
r drVj

ω−nk‖Vj
= ∑

j

Γ j
ω−α j

ψ(rmin) = ψ(rmax) = 0

(2)

All quantities above have been normalized as in [2].

Discrete model

To solve (2), the radial domain is split in Nr uniform samples [ri,ri+1] and the derivation

operator discretized with a second order finite difference scheme. The related discrete problem
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is then :

[E(m,n,ω)] [ψ(m,n,ω)] = 0 (3)

where E(m,n,ω) is an (Nr−2,Nr−2) tridiagonal matrix, whose diagonal elements are rational

functions of order 2N in ω .

Setting MWB parameters

Before actually solving (3), it is necessary to build an MWB distribution to match as closely

as possible the initial physical situation. As MWB parameters do not have direct physical

counter-parts, we require from the moments of the MWB distribution to equate those of a refer-

ence distribution, in our case a 0-centered Maxwellian, with prescribed density and temperature

profiles. Symmetry then imposes ∀ j,V− j = −Vj, which leaves 2N unknowns to set. Moment

equivalence with the pth Maxwellian even moment µ2p reads :

N

∑
j=1

2
2p+1

A jVj(r)2p+1 = µ2p(r) (4)

The contours are first either prescribed or computed by solving a generalized Hankel problem

([3]) at a reference radius r0. The weights A j can then be computed by solving (4) for 0 ≤
p ≤ N−1. The contours values are then computed by Taylor expansion of (4) at second order

and step-by-step extrapolation up to the domain borders. This procedure allows for a satisfying

moment equivalence over the domain and accurate reproduction of parameters of interest, most

notably the ηi radial profile.

Resolution strategies

The main difficulties in trying to solve problem (3) arise from the nonlinearity in ω , and the

presence of the 2N× (Nr− 2) poles α j(ri) = nk‖Vj(ri) on the real axis. Two main resolution

schemes have been adopted :

• following a widely used procedure, the dispersion relation ε(ω) is obtained by computing

the determinant of the matrix E(ω,m,n). As E is tridiagonal, ε(ω) and its derivative can

be efficiently computed by a second order recurrence relation. The root of ε(ω) of highest

imaginary part γ is then found by a classical subdivision scheme based on the argument

principle in the complex plane. Once a root (ωR,γ) is found, the relevant eigenvector is

obtained by back-substituting the solution in E(ω) and singular value decomposition.

• a second approach consists in recasting problem (3) as a linear problem in the spectral

parameter ω , i.e finding a pencil A−ωB = 0 whose eigenstructure is the same. This can

be done by going back to the continuous problem and defining a set of new unknowns
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g j =
ψ

ω−α j
. Applying the same discretization scheme as before, one obtains for the g j(ri) a

pencil of size (2N×(Nr−2),2N×(Nr−2)). The related generalized eigenvalue problem

can then be solved readily by standard routines, and the full spectrum and eigenspace

computed.

The main advantage of the first method is memory-compactness and speed if one only wants

to compute the most unstable mode. The main draw-back is the sensitivity of the root-finding

procedure when one approaches marginal stability, as the large density of poles on the real

axis enhances integration costs. The ω-linearized problem allows for a more stable procedure

and full eigenstructure solution, at the price of an increase in problem size. As a side note, the

spectral linearization procedure can be applied to non-MWB and non-ITG models as long as

they are formally equivalent to (2). For instance, we successfully reproduced results from [4]

which deals with collisional drift-waves.

Some sample results
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Figure 2: Evolution of growth rate with poloidal and toroidal mode numbers.

We present here results from a test case used in [2] to allow for comparison. Both equilibrium

density and temperature profile exhibit a localized steep gradient at the reference position r0,

providing a peaked ηi profile. An N = 6 MWB distribution was used. Growth rates (Figure 2)

and frequencies are in good agreement with the KINEZERO kinetic code used in [2], which uses

a real Gaussian ansatz for the radial dependency of the potential. Modulus of the radial envelope

of the potential presents for the most unstable modes a skewed peaked profile, centered around

the maximum of ηi. Localization and width of the mode is strongly dependent the value of the

poloidal mode number m as can be seen in Figure 3. Phase variations of the eigenmodes, which

could possibly lead to mode geometry distortion, are observed, but occur in radial zones where

potential is extinguished, leading to no observable effect. It is possible to further observe the
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Figure 3: Evolution of mode structure with poloidal mode number

correlation between the most unstable mode over whole (m,n) domain and the ηi peak radial

localization by moving the ηi peak position r0. In the table figure as can be expected the strong

correlation between r0, rpeak and linear dependency with r0 of the poloidal mode number of the

most unstable mode.

r0/ρs 3.5 5.3 7.2 9.0 10.8

nmax 4 4 4 4 4

mmax 5 7 10 13 15

rpeak/ρs 3.6 5.4 7.2 9.0 10.8

ωR×103/ΩCI -13.2 -13.2 -13.2 -13.2 -13.2

γ×103/ΩCI 6.75 6.80 6.84 6.85 6.86

Figure 4: Effect of ηi localization on most unstable mode parameters

Conclusions and further work
The combination of MWB reduction and spectral linearization allows to obtain the full spec-

trum and eigenmodes of the instability with small computing costs (a few seconds for each
(m,n) pair on a standard PC), while preserving accuracy. Non-local solving of (2) open the way
for more thorough studies of spatial structures of linear modes, and provide relevant input data
for quasilinear and nonlinear codes. Further work will focus on extending the methods to the
toroidal ITG analysis and development of a new nonlinear cylindrical ITG code.
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