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The structure and thermodynamic properties of alkali and alkaline earth plasmas are of basic interest and of
importance for high-temperature technical applications.For instance, Li is an alkali metal, is planned to be used in
inertial confinement fusion, solar power plants etc. In our previous work [1] we studied the two-component plasma
(TCP) static (SSF) and dynamic structure factors (DSF) for alkali plasmas. The present study is devoted to the study
of the TCP SSF and DSF for alkaline earth (Be2+, Mg2+, Ca2+, Sr2+, Ba2+) plasmas at temperaturesT ≥ 200
kK respectively, where most of outer electrons are ionized,but the rest core electrons are still tightly bound. The
structure factor (SF) is the fundamental quantity that describes the X-ray scattering plasma cross-section. Recently,
X-ray scattering experiments has proven to be a powerful technique in measuring densities, temperatures, charge
states and spectrally resolving the non-collective (particle) scattering characteristics of beryllium [2] in warm dense
matter regimes. We follow here the relatively simple analytical route based on Bogolyubov expansions and consider
it as an alternative to methods based onab initio quantum DFT molecular dynamic simulations, hypernetted-chain
(HNC) etc. Following our method we need for the determination of SSF and DSF a screened pseudopotential as an
essential input value. In order to correctly describe alkaline earth plasmas at moderate temperatures one needs to
take into account the ion shell structure. In both methods the screened Hellmann-Gurskii-Krasko potential (HGK)
Φab(k) (a,b = i,e), obtained on the basis of Bogolyubov’s method [3], has beenused taking into account not
only the quantum-mechanical effects (diffraction and symmetry) but also the repulsion due to the Pauli exclusion
principle [4] (and references therein). The repulsive partof the HGK potential reflects important features of the ion
shell structure. The TCP charge-charge SSF are calculated within the screened HGK approach for one-temperature
alkaline earth TCP plasmas atT = 20eV, Γii = 0.8,ne = 0.1·1023cm−3 andΓii ≈ 2.3,ne = 2.5·1023cm−3 using the
TCP HNC approximation developed for the case of absence of the local thermodynamic equilibrium (non-LTE) by
P. Seuferling et al., Phys. Rev. A. 40 (1989), and further discussed and extended for SSF by Gregori et al. [2] . The
TCP DSFs for alkaline earth plasmas are calculated within the screened HGK approach atT = 20eV, Γii = 0.5,
ne = 0.8 ·1023cm−3 using the method of moments developed by V. M. Adamyan et al. [5]. Strictly speaking, the
model mentioned here based on Bogolyubov expansions is valid only for weakly and moderately coupled plasmas
Γii . 1,Γii [ee] = z2e2[e2]/(4ε0kBTrii [ee]) with r ii [ee] = (3/4πni [ne])1/3 being the average ion-ion [electron-electron]
distance,e is the electric elementary charge andz - the ionic charge,ne[i ] - electron, ion concentrations. We present
also the results of several calculations ofΓii > 1 but these results have merely the character of extrapolations. The
a−b HGK potential has the following view:
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whereZi = ze, Ze =−e, RCei = rCeirB anda are the pseudopotential parameters. Unfortunately there are no avail-
able HGK parameters for the alkaline earth ions. That is why we looked for alternativee− i potentials with the
determined for alkaline earth plasmas parameters. It is theC. Fiolhais et al. pseudopotential, Phys. Rev. B 51
(1995). We made a fit of the“universal” parameters of HGK to the Fiolhais et al. pseudopotential, which are Be2+:
a = 3.72, r = 0.22, Mg2+: a = 2.5, rCei = 0.41, Ca2+: a = 1.95, rCei = 0.595, Sr2+: a = 1.77, rCei = 0.688, Ba2+:
a= 1.62,rCei = 0.743. Thee−e interaction is described with the help of the Deutsch potential [4] (and references
therein). The values ofrCii , a are not given in literature, thereforerCii = 2rCei is taken hypothetically taking in this
way both ions cores (closed shells) into account.

Static Structure Factors

The partial SSF of the system are defined as the static (equal-time) correlation functions of the Fourier compo-
nents of the microscopic partial charge densities, J. P. Hansen, Phys. Rev. A. (1981). A linear combination of the
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partial structure factors which is of high importance, is the charge-charge SSF defined as

Szz(k) =
1

Ne+zNi
< ρz(~k)ρz(−~k) >=

See(k)−2
√

zSei(k)+zSii (k)
z+1

, (2)

whereρz = ρ i(~k)−ρe(~k) with ρ r(~k) = ∑N
i=1exp(ı~k ·~r r

i ), Nr , r = e, i- number of ions (i) and electrons (e). In the
thermodynamic equillibrium (TE) the partial SSFSrs(k) are defined as the Fourier transform of the pair distribution
functionshrs(r) = grs(r)−1: STE

rs (k)≃ δrs−
√

nr ns
kBT Φrs(k), whereΦrs are the expression (11)-(14) in [4].

Introduction of the effective temperature allows to extendthe fluctuation-dissipation theorem (FDT) to nonequi-
librium (two-temperature) systems as well as to interpolate between classical and quantum regimes and is the input
value for the partial SSFSrs(k). The effective temperatureT ′

rs is given by,T ′
rs = mr T ′

s+msT ′
r
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, whereT ′
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with Tq = TF/(1.3251− 0.1779
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TD = Ωpih̄/kB, γ0 = 0.152 is the Bohm-Staver relation for the Debye temperature with Ω2
pi = ω2

pi/(1+ kDe/k2),
ωpi =

√
ze2ne/(ε0mi) with mi being the ion mass,kDe =

√
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e) is the Debye wave number for the elec-
tron fluid (TD ≈ 0.16eV, TF ≈ 14.5eV for Be2+). Due tomi >> me, T ′

ei = T ′
ee. As described in [2] by Gregori et

al., the FDT may still be a valid approximation even under nonequilibrium conditions if the temperature relaxation
is slow compared to the electron density fluctuation time scale. A common condition in experimental plasmas for
this to occur is whenmi >> me so that the coupling between the two-components takes placeat sufficiently low
frequencies. Using a two-component HNC approximation scheme, P. Seuferling et al., Phys. Rev. A. 40 (1989),
have shown that the static response under the conditions of the non-LTE (two-temperature) takes the form:
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whereq(k) =
√

zSei(k)/Sii (k). Note that whenT ′
e = T ′

i = Te = Ti the equation (3) turns into the eq.STE
rs (k) for

one-temperature plasma.q(k) represents the screening cloud of free (and valence) electrons that surround the ion.
Since the equation (3) represents the HNC-approximation, we will use this approximation for the treatment of non-
isothermal (two-temperature), stronger (moderately) coupled plasmas and for comparison with the corresponding
results of Gregori et al. All the parameters considered hereare beyond the degeneration border(neλ 3

ee< 1).
In Figures 1 (a) - (b) we compare our results on the charge-charge SSF (2) using (3) atT ′

e ≃ Te = Ti = T ′
i for

alkaline earth plasmas within the screened HGK model with the results obtained in the present work for alkaline
earth plasmas considered within the screened Deutsch modelfor various values of density and fixed temperature.
All curves obtained within the screened Deutsch model converge to each other due to the negligible influence of
an alkaline earth ion mass on the wavelengthλab scale entering the equations [2]. As one can easily see with the
growth of plasma coupling the peaks become more pronounced and the difference among the curves becomes
significant. We see that moderate coupling and the onset of short-range order manifest themselves inSzz as a first
localized peak, shown in an amplified scale, also reported in[2], [1] at different values ofk′ for every alkaline
earth species, and with increase of number of shell electrons (fromBe2+ to Ba2+) the position of the peaks shifts
in the direction of small values ofk′. We note that our approach is strictly speaking valid only for weakly and
moderately coupled plasmasΓii . 1. The results which we presented here forΓii > 1 have to be considered as
extrapolations to a region where the Bogolyubov expansionsshould include more terms. In Fig. 1 (c) the radial
distribution functions (RDF)gab ≃ exp(−Φab(k)/kBT) compared to the hypernetted-chain approximation results
obtained by E. Apfelbaum for aBe2+ plasma atne≈ 2.5·1023cm−3, z≈ 2, Te = 20eV, T ′

e ≃ Te = Ti = T ′
i is shown.

In the HNC calculations thee−e , e− i HGK ande−eDeutsch pseudopotentials have been used. One can observe
quite satisfactory agreement between the theoretical and HNC results.

The dynamic structure factor: the moment approach

A new “moment approach” based on exact relations and sum rules was suggested in [5]a in order to calculate
dynamic characteristics of OCP and of the charge-charge DSFof model semiquantal TCP. This approach proved
to produce good agreement with the MD data of J. P. Hansen et al, Phys. Rev. A. (1981). The corresponding DSF
are the Fourier transforms of the density-density time correlation functions. Alternatively, the charge-charge DSF
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Figure 1: The charge-charge SSFSzz (2), (3) for alkaline earth plasmas atT ′
e ≃ Te = Ti = T ′

i = 20eV (a)Γii = 0.8, (b)Γii = 2.3
and (c) RDF obtained within the screened HGK model forBe2+ plasma in comparison with HNC calulations atne ≈ 2.5 ·
1023cm−3, z≈ 2 andT ′

e ≃ Te = Ti = T ′
i = 20eV. In the (a), (b) the present results are compared with those obtained in the

present work for alkaline earth plasmas in a frame of the screened Deutsch model on a base of Gregori et al.[2]. In the (c) the
set of solid lines represents the present theoretical results within the screened HGK model, while the set of dashed lines - HNC
results obtained by E. Apfelbaum within the HGKe− i andi− i and Deutsche−epseudopotential models. As the length scale
we use the inverse electron Debye radius.

Szz(k,ω) can be defined via the FDT [5]b as

Szz(k,ω) =− h̄Imε−1(k,ω)
πΦ(k)[1−exp(−β h̄ω)]

, (4)

whereΦ(k) = z2e2/ε0k2 andε−1(k,ω) is the inverse longitudinal dielectric function of the plasma.
On a base of the Nevanlinna formula of the classical theory ofmoments [5]b (and references therein), we

calculate the relative charge-charge DSF takes the following form:
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with Szz(k,0) ≃ S0
zz(k,0) = ne
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2πkBT , ω1
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2[1− ε−1(k,0)]−1, ω2
2 = C4/C2 = ωp

2[1+ Q(k)],

whereε−1(k,0) can be determined from eq. (4) ath̄ = 0 and Kramers-Kronig relation asReε−1(k,0) = 1−
2Szz(k)kDe

2/k2, whereReε−1(k,0) = ε−1(k,0) = ε−1(k) andSzz(k) is defined atT ′
e = T ′

i = Te = Ti by (2), (3)
or STE

rs (k). The function defining the second moment is given byQ(k) = K(k)+L(k)+H [5]b. It contains the ki-
netic contribution for a classical systemK(k) = 3k2/k2

D, wherekD
2 = kDe

2 = nee2/ε0kBT. The Nevanlinna method
does not fix the functionh(k) up to some requirements as e.g.h(k) > 0. We are using this freedom and chose
expression forH(k), L(k). That is why we use for comparison two definitions: using the Coulomb and HGK inter-
actions. The contribution due to electron-ion Coulomb [6] and HGK correlations are in our approach represented
respectively by :

HH =
4
3

zrs
√

Γee[3zΓ2
ee+4rs+4Γee

√
3(1+z)rs]−1/2 , HHGK =
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The termL(k) takes into account thee−eCoulomb and HGK correlations respectively:

LC,HGK(k) =
1
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whereζee(p) is to be determined from the Deutsch potentialϕee(p) = Φ(p)ζ ′ee(p), whereΦ(p) = 4πe2/4πε0p2 -
Fourier transform of the Coulomb potential.

In Figure 2 the DSF with the different definitions ofHH , LC in the (a) andHHGK, LHGK in the (b), (6) and
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Figure 2: Comparisons of the relative charge-charge DSFs (5) of alkaline earthplasmas atΓee = 0.5 andT = 232090K,
ne = 0.8 ·1023cm−3 with the results obtained in [1] for Li+ plasma atT = 30000K, ne = 1.741·1020cm−3 and obtained by S.
Adamjan et al. in [5]b atT = 1574573K, ne = 2.5·1025cm−3 for the HLPC model atk = 1.074· ree, (a)HH , LC and (b)HHGK,
LHGK are defined as (6) and (7), (8). As the length scale we use the electron plasma frequencyωp = nee2/ε0me.

(7), (8) respectively, are shown for comparison with the HLPC model in [5]b and alkali Li+ plasma. As one can
see in the Figures the curves for alkaline earth plasmas are different from those given for the HLPC model [5]b,
Li+ plasma as well as they are in comparison with each other. The differences are due to the repulsive parts of
the HGK potential, compared to the HLPC model, which reflectsroughly the internal ion shell structure. In our
previous work [1] we showed that at higherΓii alkali ion shell structure influences the dynamic structurefactor
significantly leading to the splitting of the DSF curves withrespect to every species. Here we could not consider
the results at the sameΓii = 2 as used by Adamyan et al.[5]b because plasma becomes degenerate. In the Figures
the position of the central peaks coincides but positions ofthe plasmon peaks compared to the HLPC model are
slightly shifted . In alkaline earth plasmas the plasmon peaks are more pronounced compared to the Li+ and HLPC
plasma especially in the Fig. 2 (b) where the ion shell structure is better taken into account throughHHGK, LHGK.
This can be explained by strongeri− i interaction (Γii = 1.56) in comparison with the alkali and HLPC ions, where
Γii = 0.5. We observe that the plasmon peaks in the Fig. 2 (b) are shifted in the direction of smaller absolute value
of ω/ωp and the heights of the plasmon peaks are higher then in the Fig. 2 (a). All this could be explained by some
coupling between bound electrons and the plasmon mode. Observe that in both cases 2 (a), (b) with an increase
of number of shell electrons from Be2+ to Ba2+ the curves shift in the direction of low absolute value ofω/ωp

and their heights diminish. The difference is due to the short range forces which we took into account by the HGK
model in comparison with the HLPC model. One should also takeinto account that we employed different plasma
parameters because at the high densities and temperatures studied in [5]b inner electron shells of the alkaline earth
plasmas are destroyed.
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(5pp), (2009).

38th EPS Conference on Plasma Physics (2011) PD5.03


