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The s etof r elativistic hydr odynamic e quations de scribing pr opagation of arbitrary
electromagnetic (E M) w ave in fully radiative e lectron-positron pl asma in an arbitrary
temperature and velocity is derived. The numerical solutions are obtained. The existence of
one-dimensional loc alized solitonlike E M di stribution ina ra diativee -e’ plasmai s
represented. T he di spersionr elationt urns outt obe de pendentont hei ncoming
electromagnetic wave amplitude. The amplitude of the wave shows a saturating type behavior
in case of temperature changes. We calculated the range of the background temperatures in
which stable soli tary waves can exist. Our r esults s hould be us eful i n unde rstanding t he

nonlinear propagation of intense laser beams in a radiative electron-positron plasma.
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I. Introduction

The electron—positron (¢-e") plasma is created in the presence of strong electric or magnetic
fields (high int ensity laser-matter i nteraction) or at extremely high temperatures. In these
conditions, e-e can be created by temperature radiation. Therefore, this plasma consists of
electron-positron and photon gas. The presence of the radiation has a t remendous effect on
propagation of the wave in this kind of plasma. In these relativistic regimes, novel nonlinear
properties of the laser—plasma interaction come into play [1,2]. 30%-40% of the laser pulse
energy can be carried by a relativistic soliton [ 3,4]. In the present paper, we investigate the
propagation of electromagnetic (EM) waves in a plasma with e™-¢" and photon gas which has
an arbitrary temperature. The equations are extended in order to investigate the existence of
soliton-like EM distributions in one-dimensional geometry. We aim to find localized stable

structures sustained by this plasma.

I1. General System of equations and extension to the one-dimensional case
We consider a relativistic two-fluid plasma composed of electron and positron moving under
the influence of EM field. The conservation of the particles number can be considered as Ref.
[5]. The equation of motion for relativistic ideal fluids with consideration of electromagnetic
field is the following
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where T, Wy, S and Py are temperature, heat function per particle, entropy per particle and
pressure for an e-e’ plasma and photon gas, respectively. All of them defined in the inertial
rest frame, y= (1-v¢/c?) 2 is relativistic factor, ps=vy(yws/c?) is the generalized momentum
per each fluid particle and v is the associated three-component ve locity ve ctor. Applying
Maxwell equations [6] to Eq.(1) in an adiabatic process gives
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where f’)s =P + %K is generalized momentum. Supplementing this equation by t he law of

generalized vorticity conservation [4], the relativistic factor will be
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The field equations for the scalar (¢) and the vector (/T) potential can be written
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In which f is the current de nsity. We consider the propagation of circularly polarized EM
wave in one dimension along the x axis with mean frequency w. In order that localized
solution in such geometry exist, we have A,=0. The vector potential can be shown as A,(x,t)=
Ay(x,t)+1A,(x,t). It is now convenient to introduce new variables &=x-Vt and 1=t, where V is

the group velocity of the EM wave packet; The vector potential can be represented as
A& D) = a@ expliotd —v/o)DHr — v /)& ©)
An equilibrium e’-¢" plasma (e=p) includes the properties ne=n, and y.=y,. Since the inertia of

the two plasma species is equal, there is not any charge imbalance in the system, so ¢=0. As a

consequence, we obtain from Egs. (4) and (6)
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I11. Localized Solitons in a radiative e-¢” plasma

Our i nvestigation is re stricted to i mmobilized EM pa tterns; V=0, in a n e quilibrium e-e"

plasma (e=p). Then Eq. (7) can be written as
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where wy=wq. The spe cific enthalpy is w = (W¢ — e?a?)'/2. Considering the first law of

thermodynamics in adiabatic case (s=const.), allows us to write Eq.(8) as
az +(w/c)’a’> = —162(P. (W) — P (W,)), 'C))

where t he p ressure P (w) is considered as a function of w.E q. (9) shows thatthereis

localized solution around £=0 only if the amplitude becomes lower than a certain value an,x
a ¢ B — o (WG —w3(n—0»72, aoy

The plasma temperature and density tends down to zero (n — 0 and T — 0) in the region of
field localization (£=0). Appearance of zero temperature is not surprising since the
corresponding region is the "plasma vacuum". The trajectory in the phase space can be written

in the form
/2
F(a) = {— 16z[PCwg —e?a”)?) — Pwo)]— 27 az} , an

There are two c onditions to have single-humped solutions around £=0 w hich e xponentially
vanish atinfinity. O neisthat, if F(a;=am.)=0 be a r eal qua ntity, therefore there isan

intersection of the trajectory at a;=0, then Eq. (11) gives

16z c’e?
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In the case of a Maxw ellian plasma, the total entropy of the system consisting of e™-e" and

photon gas is [7]
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where D¢=2n"/45X> (Ag=h/myc is the Compton wavelength of electron), G(x) = K3(x)/Ka(x),

(K is M cDonald function), a nd x=moc*/KgT. The expression KX—(I;) exp {— :703} is conn ected
2

with the photon gas entropy. The conservation of entropy gives the relation
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The total enthalpy and total pressure can be written as

4
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is S tefan B oltzmann c onstant. Int he region of field | ocalization the

plasma temperature can be decreased considerably and the area of trapping region reduces as

temperature increase. Moreover from Eqgs. (15) and (12), we have
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where p = is t he pl asma f requency and Ty, = (KBT) =1is an

mgc2 X
equilibrium temperature of plasma to have localized solution (a=a,.x) around £&=0. The second
condition to have soliton-like solution is that a(§) vanish exponentially to zero at infinity. By

linearizing Eq. (7), it becomes
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The condition Aw’<0 makes the solution zero at infinity, that is
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where Ty is an equilibrium te mperature of plasma which a(§)—0 at infinity. Egs.(16) and

(18) can be solved numerically and plotted in Fig.1.
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FIG.1.Ty( (solid line) and Ty (dashed line) are plotted versus the normalized radiation frequency

4



38" EPS Conference on Plasma Physics (2011) PD5.04

Where, T (solid 1 ine) and Ty (dashed 1 ine) a re p lotted ve rsus the nor malized r adiation
frequency. The area between these two lines (AT) indicates the region where stable solitons

can exist. In addition, Eq.(12) for the behavior of wave amplitude leads to

2
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where u indicates how the amplitude changes with the change of temperature as demonstrated
in Fig.2. 0
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FIG.2. The variation of field amplitude from the a,,, versus temperature.
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II1I. Conclusion

Radiative energy transfer usually dominates over all other mechanisms. It exceeds the thermal
conduction very much and at relativistic temperature the characteristic of the simple waves
are essen tially affected by photon pressure. In this pa per, the pos sibility of E M ra diation
trapping in the form of solitonlike structures in such radiative plasma consisting of ¢-e" and
the photon gas has been investigated on the basis of relativistic, radiative and hydrodynamic

approach, extended to a one-dimensional geometry. It is predictable that solitons can exist in

an overdense plasma for wi « 1. The existence of stable solitary wave has been exhibited for
p

background temperatures AT. The amplitude of nonlinear wave exhibits a saturating behavior

with respect to amax.
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