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Abstract

A general formalism for calculating the potential distribution Φ(z) in the quasineutral region

of a Tonks-Langmuir (TL)-type model allowing for arbitrary cold ion sources and arbitrary elec-

tron distributions is presented. The kinetic concept of “collision/sink/source (CSS)-free electron

trajectories (characteristics)” is extensively used. Two types of electron populations are distin-

guished: the “type-t” ones (populating the “trapped” characteristics, which do not intersect the

walls and close on themselves) and the “type-p” ones (populating the “passing” ones, which

start out at one of the walls and end at the other). The potential in the plasma region satisfies

a “plasma equation” of the form ni {Φ} = ne (Φ), with the electron density ne (Φ) given and

the ion density ni {Φ} expressed in terms of trajectory integrals of the ion kinetic equation.

While previous TL-type models, including the “classical” TL model [1], were approximated

by Maxwellian [2] or bi-Maxwellian [3] electron velocity distribution functions (VDFs), which

imply zero CSS terms (“Vlasovian electrons”) and electron currents, we here propose a more

general class of electron VDFs allowing for non-zero CSS terms (“non-Vlasovian electrons”)

and electron currents inside the plasma region. The sheath-edge and floating-wall potentials are

calculated by balancing the ion and electron current densities at the sheath-edge singularities.

In a first detailed application, Vlasovian electrons are assumed for which the type-t and type-p

VDFs are “inner” and “outer” cut-off Maxwellians, respectively, with different amplitudes and

“formal” temperatures. For the special case of equal amplitudes and formal temperatures, the

classical Boltzmann electron distribution is formally retrieved. Special cases with other ampli-

tude and formal-temperature ratios show significant deviations from the classical Maxwellian

case. This work is a first attempt at introducing electron VDFs different from Maxwellian or

bi-Maxwellian VDFs, leading to the conclusion that substantial efforts will be required in the

future to arrive at more realistic electron VDFs.
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1. Model description

We start out from the TL model described in [1]. Instead of the Maxwellian VDF, we propose

an ad-hoc model for the electron VDF based on the electron phase space shown in Fig. 1.

Figure 1:

Two types of electron populations are distin-

guished: The “type-t” electrons (populating the

“trapped” characteristics, which do not intersect

the walls and close on themselves) and the “type-

p” ones (populating the “passing” ones, which

start out at one of the walls and end at the other).

2. Type-t electron VDF

In our ad-hoc model, we propose to approxi-

mate the type-t electron VDF by an “inner” cut-off Maxwellian given by

f et (z,v) = Aete
eΦ

kBT et
f e
− mev2

2kBT et
f H
(∣∣∣ve

sep,L− (z)
∣∣∣−|v|

)
. (1)

where T et
f is the “formal” temperature (which in general is different from the effective temper-

ature) of the type-t electrons,
∣∣∣ve
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sep,L (z)
]2
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me δW (with δW → 0+) is the

maximum speed for the type-t electrons, which is infinitesimally less than the “wall-separatrix

speed” |ve
sep,L (z) |, (cf. Fig.1), and Aet is the amplitude constant.

3. Type-p electron VDF

We furthermore propose the type-p electron VDF to be an “outer” cut-off Maxwellian of the

form

f ep (z,v) = gσv (z) f ep
V l (z,v) , (2)

where σv := sign(v), the factor gσv (z) is to be chosen such as to approximately account for the

CSS processes involved, and
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eΦ
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with Aep and T ep
f the type-p electron amplitude and formal temperature, respectively, and

|ve
sep,L+

(z) | :=
√[

ve
sep,L (z)

]2
+

2
me δW the minimum speed for the type-p electrons is , which

is infinitesimally greater than the wall-separatrix speed.

The function g± (z) must satisfy the following relations:

g+ (z) = g− (−z) , g+ (−L) = g− (+L) = 0

g+ (−zs) = g− (zs) = 0, g+ (0) = g− (0) = 1.
(4)
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(a)

(b)
Figure 2:

As a simple-first step model, we assume the function

gσv (z) to be of the form

g+ (z) = 1 for 0≤ z < L

g− (z) =





1 for 0≤ z < zs

0 for zs ≤ z < L

(5)

4. Results and discussion

We now compare some of our results (in normalized

form) with the corresponding ones based on kinetic so-

lution of the “classical” TL model given in [2]. In Fig.

2(a) we compare (for the special case Ãep := Aep/Aet =

1 and T̃ ep
f := T ep

f /T et
f = 1, corresponding to the classi-

cal case of a Maxwellian electron VDF) the inverse po-

tential profile xKK
f s (where the subscript “fs” indicates

that the finite-sum solution scheme given in [4] is used,

and the superscript “KK” denotes our model described

in Sec.1, 2 and 3 above) with the corresponding results based on the exact kinetic solution of [2].

The stars indicate the maxima of the curves, which correspond to the respective sheath edges.

We see that our results are in excellent agreement with the ones of [2]. In Fig. 2(b) the relative

deviation (∆xKK
f s /xcl , with xKK

f s := xKK
f s − xcl) of our finite-sum curve from the classical one is

given, and shown to be ∼ 10−6. A comparison of the inverse potential profiles for different

(a) (b)Figure 3:

values of Ãep and T̃ ep
f and their relative deviations from the classical curve in given in Figs.3(a)

and 3(b), respectively, showing significant deviations from the classical case. Figure 4 shows

the total electron VDFs for different values of Ãep and T̃ ep
f . For (a)

(
Ãep, T̃ ep

f

)
= (1,1) we

obtain a full Maxwellian VDF. For (b)
(

Ãep, T̃ ep
f

)
= (0.5,0.5) and (c)

(
Ãep, T̃ ep

f

)
= (0.5,1)
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(a) (b)

(c) (d)Figure 4:

we obtain cut-off Maxwellian VDFs, because for (b)
(
Ãep < 1

)
∧
(

T̃ ep
f < 1

)
, and for (c)

Ãep < 1. For (d)
(

Ãep, T̃ ep
f

)
= (1.5,1.5) we obtain a “peaked” Maxwellian VDF because

(
Ãep > 1

)
∧
(

T̃ ep
f > 1

)
.

More details and results of our KK model will be given in [5].
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