
The water-bag distribution function for kinetic modeling

E. Gravier1, P. Morel1, R. Klein1, N. Besse1, J. H. Chatenet1, P. Bertrand1, X. Garbet2

1Institut Jean Lamour, UMR 7198 CNRS-Université, Nancy, France
2CEA - IRFM, Association Euratom-CEA, Cadarache, France

FIGURE 1 – Water-bag distribution func-

tion for M = 3 bags plotted against the pa-

rallel velocity.

Predicting turbulent transport in nearly collision-

less fusion plasmas can be solved by using gyroki-

netic equations [1] but is still a nontrivial task be-

cause of its demand of computer resources. This

motivated us to revisit an alternative approach based

on the water-bag (WB) representation of the distri-

bution function. The nonlinear behavior of a system

is often determined more by the over-all structure

of the distribution function than by its precise de-

tails. It can be useful to choose for the distribution

function f a step function, called a water-bag func-

tion, that consists of a finite number of regions of

f constant (Fig. 1). According to Liouville’s phase-

space conservation property the distribution function remains constant in time between the re-

gions. The state of the system is then completely defined by specifying the boundary curves

(contours, see Fig. 2) between the different regions, allowing one to keep the kinetic aspect of

the problem with the same complexity as a multifluid model.

FIGURE 2 – Bag contours in the phase

space x− v for a three-bag system.

Introduced initially by DePackh [2], this model

was extended in magnetized plasmas in the frame-

work of gyrokinetic modeling, first in cylindrical

geometry with a uniform and static magnetic field

pointing in the axis direction. A linear study of the

ion temperature gradient (ITG) instability in cylin-

drical geometry has been performed [3]. It allowed

us to obtain the following differential equation :
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φ is the amplitude of the perturbed plasma potential, κn = ∂r lnn0(r), the poloidal wave number

is kθ = m/r where m is the mode number, J0 is the gyroaverage operator, rLi is the ion Larmor

radius, vTi is the ion thermal velocity, M is the bag number, a j is the jth bag velocity at the

equilibrium, ω is the frequency of the perturbation, α j is the jth bag relative ion density, Ω?
j =

kBTi
qB kθ ∂r lna j(r), k‖ is the parallel wave number and Z?

i = Te
Ti

q
e .

FIGURE 3 – ITG instability threshold

plotted against Ω?
n and Ω?

T for 10 bags.

In the simplest case where φ is constant it has

been shown that the water-bag model converges ra-

ther rapidly towards that of the continuous distri-

bution function when ITG instability threshold and

linear growth rates are compared (Fig. 3). Indeed,

analyzing the dependence of the linear growth rate

on the bag number for Ω?
n = −1.0 and Ω?

T = −8.0

(in k‖vTi unit, see Fig. 3) shows that the instability

growth rate reaches respectively 93% and 98.5% of

its continuous rate (bag number→ ∞) for 5 and 10

bags, whereas the fluid model overestimates the continuous kinetic rate by a factor equal to 1.6.

Quasilinear and nonlinear numerical simulations of ITG instabilities have also been carried

out in cylindrical geometry [4]. As a result, the quasilinear approach proves to be a good ap-

proximation of the full nonlinear gyro-water-bag.

FIGURE 4 – ITG linear growth rate plot-

ted against deuterium κn for three dif-

ferent density peaking of carbon.

Next, a local linear study of multi-species effects

on ITG instability has been performed [5] (Fig. 4).

Each ion species is modeled via a multi-water-bag

distribution function. Here we focused on the case

of a plasma composed of deuterium and carbon.

κTd = ∂r lnTd = −10k‖ and the carbon density is

10 % of the deuterium density. The impact of the

carbon density gradient on the linear stability of

the plasma has been studied. The stability threshold

strongly depends on the ratio between deuterium

and carbon radial density gradients (Fig. 4). The κnd

range in which the plasma is unstable is wider in the
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case of a low carbon density gradient (κnc = 0.1κnd ) than in the case of higher carbon density

gradients (κnc = 10.0κnd ). The density peaking of impurity decreases the width of the unstable

area while it increases its maximum value.

FIGURE 5 – ITG linear growth rate plot-

ted against the fraction ε of energetic par-

ticles in the plasma.

Next the water-bag model has been used to study

finite Larmor radius effects with the possibility of

using the full Larmor radius distribution instead

of an averaged Larmor radius [6]. The main result

is that the accurate magnetic moment distribution

is needed to correctly describe plasma instabilities

when the distribution function is not a Maxwellian

one. As an example of non-Maxwellian distribution

function, a bi-Maxwellian one was considered. This

case corresponds to an energetic population immer-

sed in a core plasma. The instability growth rate de-

creases as the fraction of energetic ions increases

(Fig. 5). The full treatment of the Larmor radius effect (dotted line) yields a greater instability

growth rate when compared to the averaged Larmor radius case (solid line).

FIGURE 6 – Drift waves instability

growth rate plotted against the mode m.

Moreover, a linear study of both collisional drift

waves and ITG instabilities has been performed

in the case of a linear magnetized plasma [7].

Electron-neutral collisions are now taken into ac-

count. In the case of a strong magnetic field ion-

neutral collisions and their stabilizing effect are ne-

glected. Consequently an ion water-bag distribution

function is used. Kinetic effects on collisional drift

waves have been investigated (Fig. 6). With Te and

Ti equal to 2 eV the expected phase velocity is of the

order of the ion thermal velocity, allowing particle-

wave interactions. The one-bag case is equivalent to

a fluid model and the 20-bag case is equivalent to a kinetic model. As expected fluid and kinetic

models do not give the same results. Indeed the kinetic phenomena play a stabilizing role when

the thermal velocity is close to the phase velocity. In both cases the m = 2 mode is the most

unstable but the linear growth rate given by the kinetic model is significantly lower than that

of given by a fluid model (see Fig. 6). Also the transition from collisional drift waves to ITG
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instability depending on the ion temperature gradient has been studied (Fig. 7).

FIGURE 7 – Transition from collisional

drift waves to ITG instability. The growth

rate of the most unstable mode is plotted

against the parameter κT = ∂r lnTi.

Finally first linear results in toroidal geometry

have shown the capability of this WB model in des-

cribing ITG instabilities in toroidal geometry [8].

The curvature effects of the magnetic field have

been investigated. After some assumptions a linear

eigenvalue equation has been derived and solved in

the case of a local linear analysis (Fig. 8). For com-

parison ITG instability growth rate in cylindrical

geometry is shown. As expected the disturbances

are all the more unstable that the gradient of the

plasma pressure and that of the magnetic field are

of the same sign. The maximum linear growth rate

is located at the low field side of the torus (θ = 0).

This property is very well recovered in the case of

the interchange instability, for which the growth rate is zero at the strong field side (θ =±π).

FIGURE 8 – ITG (k‖ 6= 0) and interchange

(k‖ = 0) instability growth rates plotted

against the poloidal angle θ in toroidal

geometry.
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