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Predicting turbulent transport in nearly collision-
less fusion plasmas can be solved by using gyroki-
netic equations [1] but is still a nontrivial task be-
cause of its demand of computer resources. This
motivated us to revisit an alternative approach based
on the water-bag (WB) representation of the distri-
bution function. The nonlinear behavior of a system
is often determined more by the over-all structure
of the distribution function than by its precise de-
tails. It can be useful to choose for the distribution
function f a step function, called a water-bag func-
tion, that consists of a finite number of regions of

f constant (Fig. 1). According to Liouville’s phase-
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FIGURE 1 — Water-bag distribution func-
tion for M = 3 bags plotted against the pa-

rallel velocity.

space conservation property the distribution function remains constant in time between the re-

gions. The state of the system is then completely defined by specifying the boundary curves

(contours, see Fig. 2) between the different regions, allowing one to keep the kinetic aspect of

the problem with the same complexity as a multifluid model.

Introduced initially by DePackh [2], this model
was extended in magnetized plasmas in the frame-
work of gyrokinetic modeling, first in cylindrical
geometry with a uniform and static magnetic field
pointing in the axis direction. A linear study of the
ion temperature gradient (ITG) instability in cylin-
drical geometry has been performed [3]. It allowed

us to obtain the following differential equation :

d? 1\ d
d—r‘f+ (Kn+;>d—f+[Q(r)—ké]¢:O (1)

FIGURE 2 — Bag contours in the phase

space x — v for a three-bag system.
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where
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¢ is the amplitude of the perturbed plasma potential, k,, = d,Inng(r), the poloidal wave number
is kg = m/r where m is the mode number, Jj is the gyroaverage operator, rz, is the ion Larmor
radius, vz, is the ion thermal velocity, M is the bag number, a; is the i bag velocity at the
equilibrium, o is the frequency of the perturbation, «; is the 7' bag relative ion density, Q; =
qu—BT"kgar Ina;(r), k| is the parallel wave number and Z} = %g
In the simplest case where ¢ is constant it has

been shown that the water-bag model converges ra-
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bution function when ITG instability threshold and

linear growth rates are compared (Fig. 3). Indeed,
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analyzing the dependence of the linear growth rate
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(in kyvr; unit, see Fig. 3) shows that the instability

) FIGURE 3 — ITG instability threshold
growth rate reaches respectively 93% and 98.5% of

. _ plotted against 7 and Q7 for 10 bags.
its continuous rate (bag number — oo) for 5 and 10
bags, whereas the fluid model overestimates the continuous kinetic rate by a factor equal to 1.6.
Quasilinear and nonlinear numerical simulations of ITG instabilities have also been carried
out in cylindrical geometry [4]. As a result, the quasilinear approach proves to be a good ap-

proximation of the full nonlinear gyro-water-bag.

Next, a local linear study of multi-species effects

on ITG instability has been performed [5] (Fig. 4). ZZ ‘ N :ZZfK D
Each ion species is modeled via a multi-water-bag 'EE 07 */,“‘ \\ﬁ R
distribution function. Here we focused on the case g\:zz ’/‘\‘ | R

of a plasma composed of deuterium and carbon. § 04 5‘ //'/ ‘T\ \\E

kr, = 0, InT; = —10k) and the carbon density is gzz gf // i | \ :

10 % of the deuterium density. The impact of the i °l f; // “‘ ‘ \\\ K

-20 -15 -10 =5 . 0 2o 1D 10
density gradient Kpin Kk, units

carbon density gradient on the linear stability of I

the plasma has been studied. The stability threshold

FIGURE 4 — ITG linear growth rate plot-
strongly depends on the ratio between deuterium ) ) )

ted against deuterium k;, for three dif-
and carbon radial density gradients (Fig. 4). The k;,,

ferent density peaking of carbon.
range in which the plasma is unstable is wider in the
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case of a low carbon density gradient (x,, = 0.1k;,,) than in the case of higher carbon density
gradients (k;,. = 10.0k;,,). The density peaking of impurity decreases the width of the unstable
area while it increases its maximum value.

Next the water-bag model has been used to study
finite Larmor radius effects with the possibility of ~ 7(10'rad.s™)
using the full Larmor radius distribution instead
of an averaged Larmor radius [6]. The main result

is that the accurate magnetic moment distribution

is needed to correctly describe plasma instabilities

when the distribution function is not a Maxwellian
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one. As an example of non-Maxwellian distribution

function, a bi-Maxwellian one was considered. This FIGURE 5 — ITG linear growth rate plot-
case corresponds to an energetic population immer- ted against the fraction € of energetic par-
sed in a core plasma. The instability growth rate de- ticles in the plasma.

creases as the fraction of energetic ions increases

(Fig. 5). The full treatment of the Larmor radius effect (dotted line) yields a greater instability
growth rate when compared to the averaged Larmor radius case (solid line).

Moreover, a linear study of both collisional drift

waves and ITG instabilities has been performed 3
in the case of a linear magnetized plasma [7]. | N e
Electron-neutral collisions are now taken into ac-

count. In the case of a strong magnetic field ion- N
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neutral collisions and their stabilizing effect are ne-

glected. Consequently an ion water-bag distribution il ‘

function is used. Kinetic effects on collisional drift 0 1 - 3 4

waves have been investigated (Fig. 6). With 7, and

T; equal to 2 eV the expected phase velocity is of the FIGURE 6 — Drift waves instability

order of the ion thermal velocity, allowing particle- &rowth rate plotted against the mode .
wave interactions. The one-bag case is equivalent to

a fluid model and the 20-bag case is equivalent to a kinetic model. As expected fluid and kinetic
models do not give the same results. Indeed the kinetic phenomena play a stabilizing role when
the thermal velocity is close to the phase velocity. In both cases the m = 2 mode is the most
unstable but the linear growth rate given by the kinetic model is significantly lower than that

of given by a fluid model (see Fig. 6). Also the transition from collisional drift waves to ITG
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instability depending on the ion temperature gradient has been studied (Fig. 7).

Finally first linear results in toroidal geometry
have shown the capability of this WB model in des-
cribing ITG instabilities in toroidal geometry [8].
The curvature effects of the magnetic field have
been investigated. After some assumptions a linear
eigenvalue equation has been derived and solved in
the case of a local linear analysis (Fig. 8). For com-
parison ITG instability growth rate in cylindrical
geometry is shown. As expected the disturbances
are all the more unstable that the gradient of the
plasma pressure and that of the magnetic field are
of the same sign. The maximum linear growth rate
is located at the low field side of the torus (8 = 0).

This property is very well recovered in the case of
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FIGURE 7 — Transition from collisional
drift waves to ITG instability. The growth
rate of the most unstable mode is plotted

against the parameter K7 = d,InT;.

the interchange instability, for which the growth rate is zero at the strong field side (8 = £).
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FIGURE 8 - ITG (k| # 0) and interchange
(k| = 0) instability growth rates plotted
against the poloidal angle 8 in toroidal

geometry.



