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Particle transport in stochastic media is an important topic in astrophysics [1]. A variety of 

problems, such as low-energy cosmic ray penetration into the heliosphere, the propagation of 

galactic cosmic rays in and out of the interstellar magnetic field, anomalous escape rates of 

runaways in the atmosphere are directly related to charged particle motion in fluctuating 

magnetic fields. This is a complex process due to the Lagrangian non-linearity determined by 

the space-dependence of the stochastic magnetic field. An important progress was obtained in 

the last decade due to the development of statistical methods that permitted to go beyond the 

quasilinear regime. Semi-analytical statistical approaches: the decorrelation trajectory method 

[2] and the nested subensemble approach [3] were developed in studies of transport in 

magnetically confined plasmas. In this context, transport in magnetic turbulence was studied 

in [4]. It was shown that trapping of the magnetic lines generates stochastic magnetic islands, 

that appear as quasicoherent solenoidal structures. These stochastic magnetic islands strongly 

influence magnetic line and particle transport. 

 The aim of this paper is to determine the nonlinear effects that appear in charged 

particle transport in magnetic turbulence for conditions relevant to space plasmas. The 

parameters of the stochastic magnetic field for the space and fusion plasmas are completely 

different. However, the fundamental difference between the two systems is not due to the 

parameters but to the configuration of the magnetic field. In fusion plasmas there is a very 

large average magnetic field while very small average magnetic field, of the same order as the 

fluctuating component, exists in space plasmas. Consequently, 2-dimensional stochastic 

models and guiding center approximation can be used in fusion plasmas. Lorentz force and 3-

dimensional description of the transport is necessary for space plasmas, which makes the 

model much more complicated than that of fusion plasmas. 

2. The model 

We consider a stochastic magnetic field Bt=B0ez+B where B0 is a constant average component 

directed along z-axis, and B is the stochastic component that depends on x=(x1, x2) and z. The 

stochastic component has an arbitrary direction. Its structure is taken similar to the model in 

the numerical simulation presented in [5], which corresponds to the potential vector of the 
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Thus the magnetic field perpendicular on the average magnetic field B┴=(B1, B2) has a zero 

divergence component and a component along the direction of the gradient of )2(Az  with 

non-zero divergence that is compensated by the parallel component Bz.  

The two fields in Eq. (1) A
(1)

, A
(2)

 are considered to be stationary and homogeneous 

Gaussian stochastic fields, with zero average and given two-point Eulerian correlation 

functions E
(1)

, E
(2)

 defined by the statistical average  
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The derivatives of the two fields are completely determined by those of A
(1)

, A
(2)

. They are 

stationary and homogeneous Gaussian stochastic fields and their two-point Eulerian 

correlations are obtained as derivatives of  E
(1)

, E
(2)

. These correlation functions evidence four 

parameters: β1, β2 the amplitudes of the perpendicular magnetic field fluctuations produced by 

A
(1)

 and respectively by A
(2)

 normalized with B0, λ║ the parallel correlation length and λ┴ the 

perpendicular correlation length. The fields A
(1)

, A
(2)

 are considered statistically independent.  

The equations of motion of an ion with charge q and mass m in terms of the guiding 

center coordinate ξ and the Larmor radius ρ corresponding to the average magnetic field  B0 

                      ,/, 0 jijiiii ux                                                             (2) 

where εij is the antisymmetric tensor and Ω0=qB0/m is 
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Dimensionless quantities were used in Eqs. (3)-(4) with the following units: λ┴ for the 

perpendicular lengths ξ, ρ, λ║ for z, the modulus of the initial velocity of the particles u0 for 
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uz, and the time of flight over λ┴ produced by A
(1)

,  τ= λ┴/b1u0 for time. The parameters of  

motion are the magnetic Kubo number 







 IIII
mK 



1                                                                                    (5) 

which is the ratio of the parallel decorrelation time τII=λII/u0 over the time of flight, β1 the 

amplitude of the magnetic field fluctuations, α=β2/β1 and .00   Two additional 

parameters: the initial kinetic energy of the particle and the initial Larmor radius appear in the 

initial conditions for Eqs. (3)-(4). 

Starting from the statistical description of the stochastic magnetic field, we determine 

the correlation of the Lagrangian velocity of the guiding center and the time dependent 

diffusion coefficient, which is the time integral of the correlation of the Lagrangian velocity. 

 

3. The decorrelation trajectory method 

The decorrelation trajectory method [2] reduces the problem of determining the statistical 

behavior of the stochastic trajectories to the calculation of weighted averages of some smooth, 

deterministic trajectories determined from the Eulerian correlation of the stochastic fields. 

This semi-analytical statistical approach is an approximation that satisfies the statistical 

consequences of the invariants of the motion. The main idea in our approach is to study the 

stochastic equations (3)-(4) in subensembles of realizations of the stochastic field. The whole 

set of realizations R is separated in subensembles (S1), which contain all realizations with the 

fixed values of the stochastic fields in the starting point of the trajectories x=0, z=0:  

2)2(1)1(1)1( )0,0,0(,)0,0,0(,)0,0,0(:)1( aAaAaAS ii                                            (6) 

The stochastic equations (3)-(4) are studied in each subensemble (S1). The average Eulerian 

velocity determines an average motion in each (S1). Neglecting the fluctuations of the 

trajectories, the average trajectory in (S1) (the decorrelation trajectory) is obtained by 

averaging Eqs. (3)-(4) in (S1). This approximation is validated in [3]. One obtains average 

equations that have the same structure as the equations in each realization (3)-(4) but with the 

stochastic terms replaced by their subensemble averages  (see [2] for details) 
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The time dependent diffusion coefficient is obtained by summing the contribution of 

each subensemble (S1) weighted by the probability that a realization belongs to the 

subensemble.  
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4. Results and conclusions 

The topology of the decorrelation trajectories is directly correlated with the nonlinear effects 

in stochastic transport. They show in this case that there are two nonlinear effects that produce 

trajectory trapping. The first appears for the motion in the plane perpendicular to the average 

magnetic field and consists in helicoidal segments of the magnetic lines, which form localized 

magnetic structures (magnetic islands).  This trapping process is specific to the 2-dimensional 

stochastic magnetic fields perpendicular to a large B0 but it could be observed  also in the 3-

dimensional case. The second trapping effect appears in particle motion along magnetic lines 

and is due to the formation of stochastic magnetic mirrors. Localized structures can appear 

due to this effect of trapping (trajectory clusters).   

The interaction of the two types of trapping is rather complex and determines either 

the release of trajectories or a synergetic amplification or even chaotic behavior. Their effects 

on the diffusion coefficient depends on the statistical weight of each type of decorrelation 

trajectories. A rich class of anomalous diffusion regimes are identified, in agreement with the 

results of numerical simulations [5]. The magnetic Kubo number provides a measure of the 

nonlinear effects (as in the 2-dimensional case) but other parameters can change the diffusion 

regime. For instance, the dependence of D on Km is step-like for Ω0 above a limit value and 

irregular at smaller values.  The mirror capture appears for large values of Km and leads to the 

increase of the perpendicular trapping effect and thus of the perpendicular diffusion 

coefficient. 

In conclusion, we have shown that the nonlinear effects are complex and strong in 3-

dimensional magnetic fields. A physical image was obtained by analyzing the topology of the 

decorrelation trajectories.  
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