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Tokamak operation with extreme magnetic-shear reversal allowed the possibility of equilib-

rium configurations with nearly zero toroidal current density flowing in the plasma core [1, 2],

within a region usually termed a current hole and which is induced by strong off-axis current

drive [3]. When dealing with such scenarios, it is commonly assumed that the toroidal current

density inside the current hole can be lowered to values arbitrarily close to zero. Only after it

reverses its sign, would some kind of current-clamp mechanism develop, possibly linked with

the growth of axisymmetric modes and the resulting break of the nested disposition of magnetic

surfaces [4]. However, it turns out that such breaking of the nested surfaces occurs even with

positive toroidal current density flowing still throughout the plasma core. The transition limit

is shown to be established by boundary conditions and other plasma parameters describing the

magnetic configuration. Some specific examples of the predicted nested-surface breaking are

also presented, using simple analytical solutions of the Grad-Shafranov (GS) equation.

The toroidal current density flowing at some magnetic axis z0, where ∇ψ(z0) = 0, can be

found using the axisymmetry condition and two relations of the ideal MHD equation set,

∇ ·B = 0 and ∇×B = µ0J, (1)

yielding the full contraction

µ0Jφ (z0) = Tφ
µν(z0)∂ 2

µνψ(z0), (2)

with Tφ
µν = gφαεαµβ gβγεγφν , εαβγ the Levi-Civita symbol, and ψ the poloidal-field flux.

Here, Aα , Aα , and A(α) denote, respectively, the covariant, contravariant, and physical compo-

nent of some vector A, repeated Greek indices stand for the usual implicit summation over two

coordinates in the poloidal plane, while φ designates the toroidal angle. Being real and symmet-

ric, the matrix ∂ 2
µνψ has two real eigenvalues, κ1 and κ2, and, after switching to a coordinate

set where the contravariant basis matches two of its orthogonal eigenvectors, the condition (2)

simplifies itself to the line

κ1 +κ2 = µ0Jφ (z0). (3)

It must be kept in mind that (3) is a local condition, valid at z0 only, with the allowed eigenvalues

being, in turn, determined by the set of parameters which define the magnetic configuration

(boundary conditions, profile parametrization, etc.).
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Figure 1: Solutions of (3) in κ2 space for three different values of µ0Jφ (z0) (solid lines) and

three possible routes (dashed and dotted lines) to take a configuration with positive curvature

and current density into the line µ0Jφ (z0) = 0.

On the other hand, the matrix ∂ 2
µνψ(z0) contains also all the information about how magnetic

surfaces are arranged around z0: if the curvature

K = det∂ 2
µνψ(z0) = κ1κ2 (4)

is positive, z0 is elliptic with nested surfaces around it; otherwise, it is hyperbolic. Therefore,

the graphical device illustrated in Figure 1 suffices to convince one that, in general, it is not

possible to make the toroidal current density vanish (or reverse its sign) at some elliptic axis z0

without turning it first into an hyperbolic one, with no nested magnetic surfaces within its close

vicinity. Indeed, a configuration p ∈ κ2 with both K(p) and µ0Jφ (z0) positive can only be taken

continuously into the line µ0Jφ (z0) = 0, while keeping z0 elliptic, if the path connecting them

never leaves the shaded area (K > 0) and forcibly crosses the origin (dashed line). Any other

path not crossing the origin (dotted lines) must step first into the light area (K < 0) and thus turn

z0 hyperbolic. Needless to say, requiring κ1 = κ2 = 0 simultaneously imposes a condition over

the configuration’s parameter set and at least one of these parameters would then be locked to

some very particular value, depriving one from the ability to describe arbitrary configurations.

The result above has been derived exclusively from the axisymmetry condition and the two

equations in (1), being thus not limited only to GS equilibria which follow aditional conditions

(force balance, etc.). Still, a simple but conveying example is given by the analytical equilibrium
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which solves the GS equation for a Solovev-type current-density distribution

µ0Jφ (R) = µ0J(0)
φ + c1

(
R2−R2

0
)
, (6)
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Figure 2: Magnetic surfaces of c−1
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with J(0)
φ = Jφ (z0) and c1 = −µ0dP/dψ being the constant flux derivative of the plasma pres-

sure [5]. If the parameter c2 is chosen in order to make the eigenvalue κ1 = c1R2
0(1−c2) positive,

the condition for an elliptic point at the axis reduces to µ0J(0)
φ > κ1 and the changes in topology

induced by decreasing µ0J(0)
φ > 0, at constant c1 and c2, are displayed in Figure 2.

Although it succeeds in capturing the essential features of topology transition at positive

current density, the solution in (5) is too simple to allow, for instance, any closed magnetic

surface which could prevent the plasma from being directed towards the wall when the axis

turns hyperbolic. This goal can be accomplished using a more elaborate current-density model,

µ0Jφ (R,ψ) = µ0J(0)
φ
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along with the boundary condition ψ(R0,0) = 0, which results in the equilibrium solution

ψ(R,Z) = µ0J(0)
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where Jn(x) and Yn(x) are Bessel functions of the first and second kind [6]. Keeping all other

parameters (c1, . . . ,c6,γ,σ ,R0) fixed, decreasing the on-axis toroidal current density below its

critical value (at which the on-axis curvature vanishes) is seen to turn the initial elliptic axis into

an hyperbolic one (Figure 3).

In summary, it was found that, in general, it is not possible to continuously decrease the

toroidal current density flowing in the magnetic axis towards zero without first breaking the

nested arrangement of the magnetic surfaces. This result highlights the need to handle non-

nested magnetic configurations when modelling scenarios with extreme magnetic-shear rever-

sal, even in those cases for which the current density is not assumed to reverse its sign.
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Figure 3: On-axis curvature versus on-axis current density (left panel, top), current-density

along the midplane (left panel, bottom) for µ0J(0)
φ = 0.028 (blue line, K > 0), 0.021 (brown line,

K < 0), and the critical value 0.024 (purple line, K = 0), and magnetic surfaces corresponding

to the positive and negative curvature cases (central and right panel, respectively). Equilibrium

parameters are γ = σ = 1 and R0 = 6.5m, while c1, . . . ,c6 are taken from the boundary shape.
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