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Non-nested magnetic surfaces without toroidal-current reversal

P. Rodrigues, and J. P. S. Bizarro

Associacdo Euratom—IST, Instituto de Plasmas e Fusdo Nuclear,

Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal.

Tokamak operation with extreme magnetic-shear reversal allowed the possibility of equilib-
rium configurations with nearly zero toroidal current density flowing in the plasma core [1, 2],
within a region usually termed a current hole and which is induced by strong off-axis current
drive [3]. When dealing with such scenarios, it is commonly assumed that the toroidal current
density inside the current hole can be lowered to values arbitrarily close to zero. Only after it
reverses its sign, would some kind of current-clamp mechanism develop, possibly linked with
the growth of axisymmetric modes and the resulting break of the nested disposition of magnetic
surfaces [4]. However, it turns out that such breaking of the nested surfaces occurs even with
positive toroidal current density flowing still throughout the plasma core. The transition limit
is shown to be established by boundary conditions and other plasma parameters describing the
magnetic configuration. Some specific examples of the predicted nested-surface breaking are
also presented, using simple analytical solutions of the Grad-Shafranov (GS) equation.

The toroidal current density flowing at some magnetic axis zp, where Vy(zg9) = 0, can be

found using the axisymmetry condition and two relations of the ideal MHD equation set,
V.-B=0 and VxB=puyl, (1)
yielding the full contraction

1oJs (z0) = To"" (20) 5y ¥ (20), (2)

with TyHY = gpae*Pgp, €7V, €%PY the Levi-Civita symbol, and y the poloidal-field flux.
Here, Ay, A%, and A() denote, respectively, the covariant, contravariant, and physical compo-
nent of some vector A, repeated Greek indices stand for the usual implicit summation over two
coordinates in the poloidal plane, while ¢ designates the toroidal angle. Being real and symmet-
ric, the matrix 8ﬁvl,l/ has two real eigenvalues, k] and k3, and, after switching to a coordinate
set where the contravariant basis matches two of its orthogonal eigenvectors, the condition (2)
simplifies itself to the line

K1+ K = toJy(20)- (3)
It must be kept in mind that (3) is a local condition, valid at zy only, with the allowed eigenvalues
being, in turn, determined by the set of parameters which define the magnetic configuration

(boundary conditions, profile parametrization, etc.).
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Figure 1: Solutions of (3) in k2 space for three different values of HoJy (z0) (solid lines) and
three possible routes (dashed and dotted lines) to take a configuration with positive curvature

and current density into the line toJy(z9) = 0.

On the other hand, the matrix 83”, y(zp) contains also all the information about how magnetic

surfaces are arranged around z: if the curvature
2
K = det a”vl[/(Z()) =K1K “4)

is positive, zg is elliptic with nested surfaces around it; otherwise, it is hyperbolic. Therefore,
the graphical device illustrated in Figure 1 suffices to convince one that, in general, it is not
possible to make the toroidal current density vanish (or reverse its sign) at some elliptic axis zg
without turning it first into an hyperbolic one, with no nested magnetic surfaces within its close
vicinity. Indeed, a configuration p € k2 with both K (p) and L9J,(z0) positive can only be taken
continuously into the line yJy(z0) = 0, while keeping zo elliptic, if the path connecting them
never leaves the shaded area (K > 0) and forcibly crosses the origin (dashed line). Any other
path not crossing the origin (dotted lines) must step first into the light area (K < 0) and thus turn
zo hyperbolic. Needless to say, requiring k71 = k» = 0 simultaneously imposes a condition over
the configuration’s parameter set and at least one of these parameters would then be locked to
some very particular value, depriving one from the ability to describe arbitrary configurations.
The result above has been derived exclusively from the axisymmetry condition and the two
equations in (1), being thus not limited only to GS equilibria which follow aditional conditions

(force balance, etc.). Still, a simple but conveying example is given by the analytical equilibrium

s (RZ)—1<1— > (5)2_1 2_1 1_“0J¢ _ <£)2 <£>2 5)
CleW 8 2 Ry 2 ClR% ¢ Ro Ro)’

which solves the GS equation for a Solovev-type current-density distribution

HoJo (R) = oy +c1 (R~ R3), ©6)
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Figure 2: Magnetic surfaces of cl_lRa 4l//(R,Z) from (5) for ¢ = 0.5 and ,uojéo) = %Kl (a), K

(b), and %K‘] (c), with ki = %clR(z) positive.

with J
sure [5]. If the parameter c; is chosen in order to make the eigenvalue k; = cle (1 —cy) positive,

the condition for an elliptic point at the axis reduces to LyJ q()o) > K7 and the changes in topology

induced by decreasing uoJ, éo) > 0, at constant ¢ and c;, are displayed in Figure 2.

=Jy(20) and c; = —popdP/dy being the constant flux derivative of the plasma pres-

Although it succeeds in capturing the essential features of topology transition at positive
current density, the solution in (5) is too simple to allow, for instance, any closed magnetic
surface which could prevent the plasma from being directed towards the wall when the axis

turns hyperbolic. This goal can be accomplished using a more elaborate current-density model,

2 2 2 2
0 ( R o R Y
Jo(Row)=upJ, ' | — ) — | — 1—(— - 7
i () (O @) o
along with the boundary condition y(Ry,0) = 0, which results in the equilibrium solution
0 (R\> (o)’ R\’ R (YR R (TR
R.Z) = - =) 1=(= —5 = —v |+
VIRZ) = ol (Y) +(7’) (Ro) +C1R0J1(Ro)+czRo 1(1’?0>+
®)
c3sin (Rl\/RZ%—ZZ) + ¢4 COS (Rl\/Rzﬁ—ZZ) +
0

+ (R)2 cos(}/z)
cs Co|l 5 P
0 Ro Ro

where J,(x) and Y,(x) are Bessel functions of the first and second kind [6]. Keeping all other

parameters (cy,...,Cs,7Y, 0, Rp) fixed, decreasing the on-axis toroidal current density below its
critical value (at which the on-axis curvature vanishes) is seen to turn the initial elliptic axis into
an hyperbolic one (Figure 3).

In summary, it was found that, in general, it is not possible to continuously decrease the
toroidal current density flowing in the magnetic axis towards zero without first breaking the
nested arrangement of the magnetic surfaces. This result highlights the need to handle non-
nested magnetic configurations when modelling scenarios with extreme magnetic-shear rever-

sal, even in those cases for which the current density is not assumed to reverse its sign.
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Figure 3: On-axis curvature versus on-axis current density (left panel, top), current-density
along the midplane (left panel, bottom) for L/, éo) =0.028 (blue line, K > 0), 0.021 (brown line,
K < 0), and the critical value 0.024 (purple line, K = 0), and magnetic surfaces corresponding
to the positive and negative curvature cases (central and right panel, respectively). Equilibrium

parameters are Y = 0 = 1 and Ry = 6.5m, while cy, ..., cg are taken from the boundary shape.
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