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Introduction The combination of a low-shear magnetic field and significant toroidal plasma
flows is a common feature of many tokamak experiments, especially in spherical tokamaks. It
is well known that global, ideal MHD instabilities resonant with the magnetic field in the low-
shear region of such plasmas (m/n = q), so-called infernal or, in the case m = n = 1, quasi-
interchange (QI) instabilities, can grow in static equilibria of this kind [1]. With the effects of
the plasma flow taken into account, however, the MHD stability picure is modified a great
deal. Thus, while such flows with a broad radial profile, and weak flow shear, generally have a
stabilising effect on infernal and QI instabilities [2], strong flow shear instead enhances the
drive of these instabilities through the total effective pressure gradient (static plus dynamic
pressure determines the Shafranov shifted toroidal equilibrium). In the limit of a Heaviside
step in the radial velocity profile, the instability has the character of a global Kelvin-
Helmholtz (KH) instability, peaking at the position of the step, and existing above a threshold
rotation frequency [3]. In the present work we use MHD theory for low-shear tokamak
plasmas with large aspect ratio and sonic toroidal flows [4] in order to improve the analytical
understanding of this KH like instability. We also compare predictions from the analytical
theory with numerical code calculations.

Analytical model Assuming isothermal flux surfaces of a toroidally rotating tokamak plasma,
the density varies on these surfaces as p(r,8) = p, (r)eMz(Rz/Rg‘l), with a similar expression
valid for the pressure p(r,8) [2]. Here, (7,6, ¢) are flux coordinates, R is the major radius,
M = (pQ?RE/2p)'/? ~ 1 the sonic Mach number and Q the rotation frequency. The ideal
MHD stability equation for such a plasma with large aspect ratio (¢ = r/R « 1), circular
cross section, a beta value of order £2, and an extended region of low magnetic shear where
m/q —n ~ & (generalisation of the infernal mode ordering m/q —n ~ & will be discussed in
Ref. 6 for the case of a large effective pressure gradient) has the form [4]

ag ag
(Lm,n + Tm,n)fm,n + rz(mz - nZ) %Em,n - mz %C+rm+1 =0 (1)

Emn (1) above is the main harmonic of the radial component of the plasma perturbation §, with
angular- and time-dependence e!(m8=0=w0 and B, (r) = 2uy(po + poQ?R2/2)/BZ the total
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beta value of the plasma, including the contribution from the plasma flow. Furthermore,
Ly = d[r*(m/q —n)*d/dr]/dr —r(m? — 1)(m/q — n)? is the cylindrical tokamak ope-
rator and Ty, , = d(r3A4,d/dr)/dr + r* dA,/dr — r(m?* — 1)A, the inertia operator, with
the coefficients A , given by [4]

_wh-02M?  4qiwp(wi+207)+0* _ (wh-wami)(@h-wEamz)
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Here q, = m/n, wp = w + nQ, w3 = B3/(uopoR3) , w? = T'py/(poR3), T is the adiabatic
index and wgam1 2 are the frequencies of the two geodesic acoustic modes (continuum modes)
existing at the resonant surface g = q,- of the rotating plasma [4].
In order to simulate a situation with locally very
high shear strong rotation shear within an extended region of
low shear low magnetic shear, we consider a “step model”
< equilibrium with Q = Q, = const for r < r,, and no
Q flow outside r = r,. The magnetic shear s = rq’'/q
q is assumed to be very small in the region r < ry,
9o where 1, < ry, and finite (s ~ 1 or larger) in the edge
region r, <r <a of the plasma. See Fig. 1.
Assuming, for simplicity, that q(r), po(r) and p,(r)
are uniform within the low-shear region 0 < r < ry,
the solution to Eg. (1) in the two regions 0 < r < r,
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Fig. 1. Profiles of rotation frequency and
safety factor (schematic) in the step model

equilibrium and r, < r < ry is given by
r m—-1 _ Ag r m—1 1 (1o m+1
Smn (1) = (g) § and  &na(r) == [(g) - ;(7) ] (3a, b)

respectively, where & = &, ,(15) and A = (15/11)?™. &, (r) above is continuous at r = 7;,
satisfies the boundary condition &, ,(r;) = 0 and is regular at the axis. It is seen that the
solution in Eq. (3) peaks at the point of maximum (infinite) rotation shear, and becomes pro-
gressively more localized around r = r, as the mode number m increases. These features are
seen also in the KH eigenfunctions calculated with CASTOR-FLOW [5] in Refs. 3.

The dispersion relation for the KH like instability in the step model equilibrium in Fig. 1
can be obtained after integration of Eg. (1) across r = r, and calculating also the coefficient
C, in Eq. () from [6]

2p2
Amnm“R§

r dpg
Co == Tirmm Jy T 7 Smndr (4)

where Ay, =(Mm+1)(m+2+0)/2m—2C), C=1émi1n/Emirin aNd &gy IS the
amplitude of the side-band m + 1 in the edge region of the plasma. It turns out that the KH
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instability appears in the regime Q, ~ M = 1, where Q, = Qy/e,w,4 and &, = a/R, [6].
Analytical insight into parameter dependences of the eigenvalue w = w, + iy can therefore be
obtained from an asymptotic expansion of w for 0, > 1. From the dispersion relation one
obtains after some algebra the frequency and growth rate (also normalised with e,w,) as [6]

~ _ n(1-1) ~ n 1

By = "0 + =+ 0 (ﬁg) (5a)
~2 _ X(=1) 54, @-D[@+Dn?+2m-8] 5,  2m(1+)+1 _rp_ 2 (ba 2 1

p2 =228 + - O+ - -2 () +0 () (5b)

where y = (m —1)/B + Amz(a/r)>m?/n?, B = B/ef and Aq = (4o — 4,)/¢a-

8 T

Results In Fig. 2 the growth rate for (2n,n) modes

®4
=05, Ar =0.15 . . .
o’ fo 6.3 is shown for a plasma with ¢, = 0.1 and the profiles
£ = 0.1
6 Aq =01

B0)/(s)*=05

R>

Q(r) =0 + 30 tanh[(F — 2)/(Arp)?]  (6a)

i po(r) = po(0)[1 — (r/a)?]? (6b)
po(r) = po(0)[1 — (r/a)®] (6¢)
2r q(r) = qo + 2(r/a)® (6d)
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where 7, = 0.5a, Ar, =0.15a, £(0) =0.5 and
0.5 1 N 15

Q qo = 2.1. The solid curves are calculated from Eqgs.
Fig. 2. Growth rates for several (2n.n) modes (1)-(2) and (4) while the symbols indicate CASTOR-
obtained analytically and with CASTOR- FLOW results. The KH like instability for these

FLOW in the equilibrium given by Egs. (6). mode numbers has a threshold rotation frequency of

order Qg ¢4t ~ 0.5-0.8, and the growth rate scales as # ~ 13 above the threshold, according to
Eq. (5b). Furthermore, the growth rate scales with n as 7 ~n'/? above the threshold, a
property seen also in the numerical results of Ref. 3. Near the threshold, however, the
stabilising effect of the the n?Ag-term in Eq. (5b) becomes important. Thus, modes with large
n usually have larger threshold frequencies than modes with small n, in spite of the increasing
growth rates with increasing n at large Q,. This property can be seen both in the analytical and
the numerical solutions in Fig. 2.

Due to the stabilising Ag term in Eq. (5b), a larger Aq results in a higher threshold
frequency for destabilisation of a given KH mode (m,n). This is illustrated in Fig. 3 for the
(1,1) mode in the same equilibrium as in Fig. 2, but with g, = 1.1,1.2,1.3, and 1.4. The solid
curves are again calculated from Egs. (1) and (4) while the dashed curves are obtained from
Eg. (5b). The threshold rotation frequencies Q, ., obtained from CASTOR-FLOW are also
indicated in the figure. Thus, the magnitude of Aqg is seen to have an effect on the threshold
and the growth rate near the threshold, but the effect is wiped out above the threshold by the
destabilising effect from the largest, Ag-independent, term in Eq. (5b). This leads to a growth
rate independent of Aq in the low-shear region when Q, > ﬁo,mt, as can be seen in Fig. 3.
Furthermore, unless the plasma beta is very small, the growth rate is also almost independent
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of the beta value in this regime, as shown in Fig. 4 for a (5,2) mode in the same equilibrium
as in Figs. 2 and 3, but with g, = 2.6 and O, = 2. In this regime 7 ~ /203, and when beta is
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Fig. 3. Growth rate vs Q for the (1,1) mode Fig. 4. Growth rate and_ real frequency vs beta
obtained analytically and from Eq. (5b) for for the (5,2) mode obtained from the
the parameters indicated. Threshold rotation analytical m_odgl in Egs. (1) and (4) for the
frequencies obtained from CASTOR-FLOW. parameters indicated.

sufficiently large, y is dominated by the $-independent A term, leading to the practically

constant growth rate for 8 = 1 seen in Fig. 4. A similar beta dependence of the KH growth
rate was seen also in the numerical results of Ref. 3.

We see that, for 0y > Qg i, the growth rate of the KH like instability can be expressed
as y% ~ Ay, X (dynamical pressure drop)?, and the result comes from the C, term in Eq.
(1). This is analogous to the infernal or QI instability in a static plasma [1], and it is therefore
possible to interpret the KH instability in this regime as an infernal or, for m =n =1, a Ql
instability, driven by the dynamical pressure drop of the plasma flow. It is seen that instability
can occur in these strongly rotation-sheared plasmas even when the value of g in the low-shear
region is far from rational. Compared to a static plasma, the stabilising dependence of
magnetic field line bending is weak, as is also the dependence of the static pressure.
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