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Introduction The combination of a low-shear magnetic field and significant toroidal plasma 
flows is a common feature of many tokamak experiments, especially in spherical tokamaks. It 
is well known that global, ideal MHD instabilities resonant with the magnetic field in the low-
shear region of such plasmas (𝑚/𝑛 ≈ 𝑞), so-called infernal or, in the case 𝑚 = 𝑛 = 1, quasi-
interchange (QI) instabilities, can grow in static equilibria of this kind [1]. With the effects of 
the plasma flow taken into account, however, the MHD stability picure is modified a great 
deal. Thus, while such flows with a broad radial profile, and weak flow shear, generally have a 
stabilising effect on infernal and QI instabilities [2], strong flow shear instead enhances the 
drive of these instabilities through the total effective pressure gradient (static plus dynamic 
pressure determines the Shafranov shifted toroidal equilibrium). In the limit of a Heaviside 
step in the radial velocity profile, the instability has the character of a global Kelvin-
Helmholtz (KH) instability, peaking at the position of the step, and existing above a threshold 
rotation frequency [3]. In the present work we use MHD theory for low-shear tokamak 
plasmas with large aspect ratio and sonic toroidal flows [4] in order to improve the analytical 
understanding of this KH like instability. We also compare predictions from the analytical 
theory with numerical code calculations. 
 
Analytical model Assuming isothermal flux surfaces of a toroidally rotating tokamak plasma, 
the density varies on these surfaces as 𝜌(𝑟,𝜃) = 𝜌0(𝑟)𝑒ℳ2�𝑅2 𝑅02⁄ −1�, with a similar expression 
valid for the pressure 𝑝(𝑟,𝜃) [2]. Here, (𝑟,𝜃,𝜑) are flux coordinates, R is the major radius, 
ℳ = (𝜌Ω2𝑅02 2𝑝⁄ )1/2 ~ 1 the sonic Mach number and Ω the rotation frequency. The ideal 
MHD stability equation for such a plasma with large aspect ratio (𝜀 = 𝑟 𝑅⁄ ≪ 1), circular 
cross section, a beta value of order 𝜀2, and an extended region of low magnetic shear where 
𝑚 𝑞⁄ − 𝑛 ~ 𝜀 (generalisation of the infernal mode ordering 𝑚 𝑞⁄ − 𝑛 ~ 𝜀 will be discussed in 
Ref. 6 for the case of a large effective pressure gradient) has the form [4] 
 

�ℒ𝑚,𝑛 + 𝒯𝑚,𝑛�𝜉𝑚,𝑛 + 𝑟2(𝑚2 − 𝑛2) 𝑑𝛽
�0
𝑑𝑟

𝜉𝑚,𝑛 − 𝑚2 𝑑𝛽�0
𝑑𝑟

𝐶+𝑟𝑚+1 = 0 (1) 
 
𝜉𝑚,𝑛(𝑟) above is the main harmonic of the radial component of the plasma perturbation 𝛏, with 
angular- and time-dependence 𝑒𝑖(𝑚𝜃−𝑛𝜑−𝜔𝑡) and 𝛽�0(𝑟) = 2𝜇0(𝑝0 + 𝜌0Ω2𝑅02 2⁄ ) 𝐵02⁄   the total 
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beta value of the plasma, including the contribution from the plasma flow. Furthermore, 
ℒ𝑚,𝑛 ≡ 𝑑[𝑟3(𝑚 𝑞⁄ − 𝑛)2 𝑑 𝑑𝑟⁄ ] 𝑑𝑟⁄ − 𝑟(𝑚2 − 1)(𝑚 𝑞⁄ − 𝑛)2 is the cylindrical tokamak ope-
rator and 𝒯𝑚,𝑛 ≡ 𝑑(𝑟3𝐴1 𝑑 𝑑𝑟⁄ ) 𝑑𝑟⁄ + 𝑟2 𝑑𝐴2 𝑑𝑟⁄ − 𝑟(𝑚2 − 1)𝐴1 the inertia operator, with 
the coefficients 𝐴1,2 given by [4] 
 

𝐴1 = −𝜔𝐷
2−Ω2ℳ2

𝜔𝐴
2 − 4𝑞𝑟2𝜔𝐷

2 �𝜔𝑠
2+2Ω2�+Ω4

2𝜔𝐴
2�𝜔𝑠

2−𝑞𝑟2𝜔𝐷
2 �

= �𝜔𝐷
2−𝜔GAM1

2 ��𝜔𝐷
2−𝜔GAM2

2 �
𝜔𝐴
2�𝜔𝑠

2−𝑞𝑟2𝜔𝐷
2 �

 (2a) 

 

𝐴2 = −𝜔𝐷
2+Ω2��𝑚2−1�ℳ2+2𝑚2−𝑛2−4�

𝜔𝐴
2 + 2𝑚𝑞𝑟𝜔𝐷Ω�2𝜔𝑠

2+Ω2�
𝜔𝐴
2�𝜔𝑠

2−𝑞𝑟2𝜔𝐷
2 �

− 4�𝑞𝑟2𝜔𝐷
2+2Ω2�𝜔𝑠

2+Ω4

2𝜔𝐴
2�𝜔𝑠

2−𝑞𝑟2𝜔𝐷
2 �

 (2b) 

 
Here 𝑞𝑟 = 𝑚/𝑛, 𝜔𝐷 = 𝜔 + 𝑛Ω,  𝜔𝐴2 = 𝐵02 (𝜇0𝜌0𝑅02)⁄  , 𝜔𝑠2 = Γ𝑝0 (𝜌0𝑅02)⁄ , Γ is the adiabatic 
index and 𝜔GAM1,2 are the frequencies of the two geodesic acoustic modes (continuum modes) 
existing at the resonant surface 𝑞 = 𝑞𝑟 of the rotating plasma [4].  

     In order to simulate a situation with locally very 
strong rotation shear within an extended region of 
low magnetic shear, we consider a “step model” 
equilibrium with Ω = Ω0 = const for 𝑟 ≤ 𝑟0 and no 
flow outside 𝑟 = 𝑟0. The magnetic shear 𝑠 = 𝑟𝑞′ 𝑞⁄  
is assumed to be very small in the region 𝑟 < 𝑟1, 
where 𝑟0 < 𝑟1, and finite (𝑠 ~ 1 or larger) in the edge 
region 𝑟1 ≤ 𝑟 ≤ 𝑎 of the plasma. See Fig. 1. 
Assuming, for simplicity, that 𝑞(𝑟), 𝑝0(𝑟) and 𝜌0(𝑟) 
are uniform within the low-shear region 0 ≤ 𝑟 ≤ 𝑟1, 
the solution to Eq. (1) in the two regions 0 ≤ 𝑟 ≤ 𝑟0 
and 𝑟0 ≤ 𝑟 ≤ 𝑟1 is given by  

 

𝜉𝑚,𝑛(𝑟) = � 𝑟
𝑟0
�
𝑚−1

𝜉      and      𝜉𝑚,𝑛(𝑟) = 𝜆𝜉�

𝜆−1
�� 𝑟
𝑟0
�
𝑚−1

− 1
𝜆
�𝑟0
𝑟
�
𝑚+1

� (3a, b) 

 
respectively, where 𝜉 = 𝜉𝑚,𝑛(𝑟0) and 𝜆 = (𝑟0 𝑟1⁄ )2𝑚. 𝜉𝑚,𝑛(𝑟) above is continuous at 𝑟 = 𝑟0, 
satisfies the boundary condition 𝜉𝑚,𝑛(𝑟1) = 0 and is regular at the axis. It is seen that the 
solution in Eq. (3) peaks at the point of maximum (infinite) rotation shear, and becomes pro-
gressively more localized around 𝑟 = 𝑟0 as the mode number 𝑚 increases. These features are 
seen also in the KH eigenfunctions calculated with CASTOR-FLOW [5] in Refs. 3. 
 The dispersion relation for the KH like instability in the step model equilibrium in Fig. 1 
can be obtained after integration of Eq. (1) across 𝑟 = 𝑟0 and calculating also the coefficient 
𝐶+ in Eq. (1) from [6] 
 

𝐶+ = −Λ𝑚,𝑛𝑚2𝑅02

𝑛2𝑟1
2𝑚+2 ∫ 𝑟𝑚+1 𝑑𝛽�0

𝑑𝑟
𝜉𝑚,𝑛𝑑𝑟

𝑟1
0   (4) 

 
where Λ𝑚,𝑛 = (𝑚 + 1) (𝑚 + 2 + 𝐶) (2𝑚− 2𝐶)⁄ , 𝐶 = 𝑟1𝜉𝑚+1,𝑛

′ /𝜉𝑚+1,𝑛 and 𝜉𝑚+1,𝑛 is the 
amplitude of the side-band 𝑚 + 1 in the edge region of the plasma.  It turns out that the KH 

Fig. 1. Profiles of rotation frequency and 
safety factor (schematic) in the step model 
equilibrium 
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instability appears in the regime Ω�0 ~ ℳ ≳ 1, where Ω�0 = Ω0 𝜀𝑎𝜔𝐴⁄  and 𝜀𝑎 = 𝑎 𝑅0⁄  [6]. 
Analytical insight into parameter dependences of the eigenvalue 𝜔 = 𝜔𝑟 + 𝑖𝛾 can therefore be 
obtained from an asymptotic expansion of 𝜔 for Ω�0 ≫ 1. From the dispersion relation one 
obtains after some algebra the frequency and growth rate (also normalised with 𝜀𝑎𝜔𝐴) as [6] 
 

𝜔�𝑟 = −𝑛(1−𝜆)
2

Ω�0 + 𝑛
𝑚𝜒Ω�0

+ 𝑂 � 1
Ω�0
3�    (5a) 

 

𝛾�2 = 𝜒(1−𝜆)
2

Ω�04 + (1−𝜆)�(1+𝜆)𝑛2+2𝑚−8�
4

Ω�02 + 2𝑚(1+𝜆)+1
2𝑞𝑟2𝜒

− Γ𝛽̂ − 𝑛2 �∆𝑞
�

𝑞𝑟
�
2

+ 𝑂 � 1
Ω�02
�  (5b) 

 
where 𝜒 = (𝑚− 1) 𝛽̂⁄ + 𝜆Λ𝑚,𝑛(𝑎 𝑟1⁄ )2 𝑚3 𝑛2⁄ , 𝛽̂ = 𝛽/𝜀𝑎2 and  ∆𝑞� = (𝑞0 − 𝑞𝑟)/𝜀𝑎. 
 

Results  In Fig. 2 the growth rate for (2𝑛,𝑛) modes 
is shown for a plasma with 𝜀𝑎 = 0.1 and the profiles 
 
Ω(𝑟) = 1

2
Ω0 + 1

2
Ω0 tanh[(𝑟02 − 𝑟2) (Δ𝑟0)2⁄ ]   (6a) 

𝑝0(𝑟) = 𝑝0(0)[1− (𝑟 𝑎⁄ )2]2   (6b) 
𝜌0(𝑟) = 𝜌0(0)[1 − (𝑟 𝑎⁄ )6]   (6c) 
𝑞(𝑟) = 𝑞0 + 2(𝑟 𝑎⁄ )8   (6d) 
 
where  𝑟0 = 0.5𝑎,  Δ𝑟0 = 0.15𝑎,  𝛽̂(0) = 0.5  and 
𝑞0 = 2.1. The solid curves are calculated from Eqs. 
(1)-(2) and (4) while the symbols indicate CASTOR-
FLOW results. The KH like instability for these 
mode numbers has a threshold rotation frequency of  

order Ω�0,𝑐𝑟𝑖𝑡 ~ 0.5-0.8, and the growth rate scales as 𝛾� ~ Ω�02 above the threshold, according to 
Eq. (5b). Furthermore, the growth rate scales with 𝑛 as 𝛾� ~ 𝑛1/2 above the threshold, a 
property seen also in the numerical results of Ref. 3. Near the threshold, however, the 
stabilising effect of the the 𝑛2∆𝑞-term in Eq. (5b) becomes important. Thus, modes with large 
𝑛 usually have larger threshold frequencies than modes with small 𝑛, in spite of the increasing 
growth rates with increasing 𝑛 at large Ω�0. This property can be seen both in the analytical and 
the numerical solutions in Fig. 2.  
 Due to the stabilising ∆𝑞 term in Eq. (5b), a larger ∆𝑞 results in a higher threshold 
frequency for destabilisation of a given KH mode (𝑚,𝑛). This is illustrated in Fig. 3 for the 
(1,1) mode in the same equilibrium as in Fig. 2, but with 𝑞0 = 1.1, 1.2, 1.3, and 1.4. The solid 
curves are again calculated from Eqs. (1) and (4) while the dashed curves are obtained from 
Eq. (5b). The threshold rotation frequencies Ω�0,𝑐𝑟𝑖𝑡 obtained from CASTOR-FLOW are also 
indicated in the figure. Thus, the magnitude of ∆𝑞 is seen to have an effect on the threshold 
and the growth rate near the threshold, but the effect is wiped out above the threshold by the 
destabilising effect from the largest, ∆𝑞-independent, term in Eq. (5b). This leads to a growth 
rate independent of ∆𝑞 in the low-shear region when Ω�0 ≫ Ω�0,𝑐𝑟𝑖𝑡, as can be seen in Fig. 3. 
Furthermore, unless the plasma beta is very small, the growth rate is also almost independent 

Fig. 2. Growth rates for several (2n.n) modes 
obtained analytically and with CASTOR-
FLOW  in the equilibrium given by Eqs. (6). 
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of the beta value in this regime, as shown in Fig. 4 for a (5, 2) mode in the same equilibrium 
as in Figs. 2 and 3, but with 𝑞0 = 2.6 and Ω�0 = 2. In this regime 𝛾� ~ 𝜒1/2Ω�02, and when beta is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
sufficiently large, 𝜒 is dominated by the 𝛽̂-independent Λ𝑚,𝑛 term, leading to the practically 
constant growth rate for 𝛽̂ ≳ 1 seen in Fig. 4. A similar beta dependence of the KH growth 
rate was seen also in the numerical results of Ref. 3.  
 We see that, for Ω�0 ≫ Ω�0,𝑐𝑟𝑖𝑡, the growth rate of the KH like instability can be expressed 
as 𝛾2 ~ Λ𝑚,𝑛 × (dynamical pressure drop)2, and the result comes from the 𝐶+ term in Eq. 
(1). This is analogous to the infernal or QI instability in a static plasma [1], and it is therefore 
possible to interpret the KH instability in this regime as an infernal or, for 𝑚 = 𝑛 = 1, a QI 
instability, driven by the dynamical pressure drop of the plasma flow. It is seen that instability 
can occur in these strongly rotation-sheared plasmas even when the value of 𝑞 in the low-shear 
region is far from rational. Compared to a static plasma, the stabilising dependence of 
magnetic field line bending is weak, as is also the dependence of the static pressure. 
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Fig. 3. Growth rate vs Ω  for the (1,1) mode 
obtained analytically and from Eq. (5b) for 
the parameters indicated. Threshold rotation 
frequencies obtained from CASTOR-FLOW. 

Fig. 4. Growth rate and real frequency vs beta 
for the (5,2) mode obtained from the 
analytical model in Eqs. (1) and (4) for the 
parameters indicated. 
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