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Introduction The test particle modelling is widely used in fusion research to study the
transport processes. With this method one can evaluate the radial diffusion coefficients [1],
estimate the heat loads on different plasma-facing components, determine the poloidal and
toroidal distributions of fast ion and runaway electron losses, study the toroidal field ripple
induced transport, etc. In contrast to any analytical theory (such as the neoclassical theory or
the drift kinetic equation [2]), the test particle modelling is a direct numerical method, which
does not rely on any approximations for the Larmor radius of the particle, the aspect ratio of
the machine or the poloidal magnetic field. The price paid for such an intrinsic simplicity is
that the test particle modelling commonly involves very intensive CPU calculations.

In this work we describe a numerical code which evaluates the diffusion coefficient of
monoenergetic test particles (impurities) in the tokamak geometry. The full orbit integration
of particle motion is accompanied by the Monte Carlo collision operator, which scatters both
the pitch and the gyro angles of the particle. As an application of this method, we discuss how
the magnetic islands produced by the resonant magnetic perturbations (RMP) affect the
collisional transport of impurities [3].

Numerical method Test particle codes used for transport studies usually consist of two
basic modules. The first module describes the deterministic motion of particles in the given
magnetic configuration. Usually the particle trajectory integration module involves the use of
the guiding center equations. The effect of particle gyrorotation can often be neglected, which
results in a substantial reduction of the CPU time needed to trace a particle. Unfortunately, for
some problems of interest this approximation cannot be applied; then, one has to solve the full
orbit equations of motion. Such an approach should be used, for example, for studying the
dynamics of alpha particles and fast ions with large Larmor radius. Recently, this approach
has been actively used for calculations of particle transport in spherical tokamaks. For
spherical torii the inverse aspect ratio and the poloidal magnetic field are no longer small
parameters, thus the fundamental approximations of the neoclassical theory cannot be applied.
The full orbit equation of motion for a particle under the influence of the Lorentz force is

solved in the quasitoroidal system of coordinates (»,8,¢), where r is the radial coordinate,

and 6 and ¢ are the poloidal and toroidal angles, respectively. We consider a simplified

tokamak magnetic configuration with circular magnetic surfaces
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where ¢(r) is the safety factor (see, Fig. 1), and R =R, +rcos6 .

€ | (1)

The second module of the code describes the stochastic scattering of test particles due to
the Coulomb collisions with background plasma species. Usually the Monte Carlo equivalent
collision operators are used, which change randomly the velocity of the particle after each
time step of the integration procedure. In calculations based on guiding center equations it is
sufficient to use a collision operator that changes the pitch angle of the particle only [1].
However, for the full orbit modelling an implementation of the scattering of both of the
particle pitch angle and the gyro phase is needed. A Monte Carlo collision operator suitable

for the exact trajectory integrators was derived by Boozer in Ref. [4]:

v, =(1-v,At)v, £ \/(l —0.5v,At) Vv At (T, £7T, )V, , ()
where b is the unit vector along the magnetic field; v, and ¥, are the velocities of the
particle before and after the scattering, respectively; 7, =bxV,/|bx¥,| and 7, = 7, xV, /v,
are two unit vectors perpendicular to v,. Here, v, is the collision (deflection) frequency and

At is the integration time step, which is chosen to satisfy v,Af<1. The full orbit Monte

Carlo collision operator uses two random numbers for each particle at each time step. The
sign plus or minus in Eq. (2) should be chosen randomly, but with equal probabilities. The
collision operator given by Eq. (2) ensures that after sufficiently long time particle spends
equal time at all values of the pitch and gyro angles. The deflection frequency to be used in
the collision operator is given in Refs. [1-3].

In order to evaluate the radial diffusion coefficient, the full orbit equations of motion are
solved for the monoenergetic ensemble of N= 1000 particles, applying at each time step
velocity scattering according to Eq. (2). All particles evolve independently from each other.
They start their motion from the flux surface where ¢ = 2 (1, /a ~ 0.604) . The initial poloidal
and toroidal angles of each particle are distributed randomly, as well as the velocity
components. The statistical properties of the ensemble are evaluated by means of calculating
the mean-square displacement, C,(¢)= < (r.(t)—<r(¢)>)* >, where the brackets denote the
average over the particles in the ensemble.

The diffusion coefficient is defined as the time derivative of the mean-square
displacement, D(¢)=(1/2)(dC, /dt). The temporal dependence of C, defines the type of the

diffusion process. For normal diffusion processes the mean-square displacement increases

linearly in time. Figure 2 shows a typical dependence of Cs(z) for the ensemble of W**" ions
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with the energy E =1 keV. The integration time in our simulations is chosen to be 10 collision
times, which equals to 3 ms for the parameters considered. As follows from Fig. 2, for time
intervals smaller than the mean time between the collisions there is a ballistic phase when
C>(t) varies quadratically in time. Then, the collisional effects start to dominate and the
normal diffusion is observed. The diffusion coefficient is calculated as a slope of the curve for
the mean-square displacement. Fitting the curve by the least-squares method, we find that the
relative accuracy of the D coefficient estimated in this way is ~ 10%. The accuracy of
D evaluation can be improved by increasing the number of particles used in the modelling.
The obtained results are in a fair agreement with the results of the neoclassical theory [3].

Effect of RMP on collisional transport of impurities We have used the full orbit test
particle code to study the effect of RMP on the collisional transport of impurities. RMP are
actively studied in view of the perspective of their use for ELM active control and
suppression [5]. The additional coils producing a perturbation to the equilibrium magnetic

field are installed on many tokamaks and stellarators. In theoretical studies the magnetic field
perturbation can be introduced as B =V x(a B,), where the scalar function a = a(r,6,¢)

(which has the physical dimension of length) defines the structure of the perturbed magnetic

field. For the present study we consider a single harmonic perturbation of the form

a(r,0,p) = a, e """ sin(md - ng) . (3)
This perturbation produces a chain of m magnetic islands with a center at the rational
magnetic surface r = rys, Where ¢ = m/n. The magnetic perturbation of the form (3) produces
only a single chain of the magnetic islands avoiding the formation of the satellite islands.
We focus our attention on the effect of the m = 2, n = I perturbation.

The radial width of the magnetic islands is controlled by the RMP amplitude, a.
The perturbation with the normalized amplitude ago/a =10 produces the magnetic islands
having a width approximately 10% of the plasma radius.

Figure 3 shows the dependence of C,(#) calculated for tungsten impurities for different
perturbation amplitudes. The lowest curve corresponds to the case of the plasma without
magnetic islands. As expected, an increase in RMP amplitude results in greater radial
excursions of particle orbits and hence larger diffusion coefficient. The observed diffusion is
normal in all cases since the collisions are rather frequent. For the regimes of reduced
collisionality the radial particle transport under the presence of the magnetic islands can
exhibit sub-diffusive or non-diffusive behavior.

Figure 4 summarizes the obtained results. It shows how the diffusion coefficient for
tungsten impurities depends on the RMP amplitude. Under the assumption that the

characteristic radial displacement of the particle is simply proportional to the island width, the



39" EPS Conference & 16" Int. Congress on Plasma Physics P1.027

curve in Fig. 4 should be linear in ag. However, the observed curve shows a more complex
quadratic dependence of the diffusion coefficient on the RMP amplitude. For the case when
the island width is 15% of the plasma radius the diffusion coefficient for W**" ions increases
by a factor of 8 with respect to the case without perturbation.

Conclusions A numerical method to evaluate the radial diffusion coefficient of test particles
is presented. The Coulomb collisions of test particles with the background plasma are
modelled by an equivalent Monte Carlo collision operator, which scatters both the pitch and
the gyro angles of the particle. Diffusion coefficients obtained from numerical simulation are
in a fair agreement with the results of the neoclassical theory. It is shown that the collisional

impurity diffusion can be significantly enhanced by the RMP.
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Figure 1. The safety factor profile, g(r) used in the
simulations (g = 1.1, g, = 4.6).
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Figure 3: The temporal dependence of the mean-square
displacement, C,(z) for different RMP amplitudes.

Figure 2: Typical temporal dependence of the mean-

square

displacement,

Ca(1)

for the ensemble of

N = 1000 tungsten ions with the energy £ =1 keV.
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Figure 4: The radial diffusion coefficient for W**" ions
as a function of the magnetic perturbation amplitude.
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