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Introduction.

After the successful completion of the 2010-2011 shut down, JET resumed operation
with completely new plasma facing components (PFCs) consisting of a tungsten (W) divertor
and a beryllium (Be) inner wall complemented by some W tiles in small crucial areas [1].
These materials, as well as the shape of the plasmas they interact with, mimic very closely the
scenarios foreseen for ITER especially when JET is run at high triangularity (6~0.35).
Operation was resumed with ohmic or slightly additionally heated L-mode discharges, in
order to safely explore the effect of the new wall on fuelling efficiency, density limit,
recycling, detachment, impurity behaviour and confinement.

One of the main reasons for turning to metals as PFCs, in spite of the remarkable
capability of carbon to withstand large power fluxes and to yield intrinsic edge radiation, was
to reduce the fuel retention, which in ITER would quickly saturate the maximum allowed
trittum inventory. L-mode operation with the new wall at JET has immediately shown the
beneficial effect of the new materials to this regard [2].

Data Base and Plasma Configurations

Pulses considered in this paper had a plasma current of I, = 2.0 MA and were in the
toroidal field range of By = 2.0-3.1 T corresponding to safety factors of qos = 3.0-4.3. They
were L-mode discharges additionally heated by low ICRH power (~1 MW) except for the

core transport analysis which refers to an ohmic case. All of them were at relatively high
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triangularity (6~0.35) with the inner strike point (ISP) on the vertical target (coated W) and
the outer strike point (OSP) on the horizontal bulk W tile placed at the centre of the divertor.
The OSP position could be more on the high filed side (HFS), in which case the configuration
is called HT3L, or displaced towards the low field side (LFS) in the HT3R configuration. One
of the main differences between the two configurations is the pumping capability: HT3R has
got more SOL flux lines ending in the divertor corner where particles are pumped through the
pumping slit by the divertor cryopump. Both, density ramps aiming at density limit
disruptions, and density steps were performed, the latter being mainly intended for the
characterisation of confinement and detachment [3, 4].

Density limit and response to gas injection

The examined data base showed a density limit (DL) dependence on the toroidal
magnetic field (fig. 1) during a field scan at constant plasma current: i.e. the density limit was
significantly higher (~40%) at lower safety factor qos. In the latter case, density profiles were
more peaked performing a higher central density at the expenses of a lower central
temperature, all of this resulting in an almost identical pressure profile (fig. 2). An influence
of the magnetic field on the density limit, was also observed in FTU and was related to the
different profile peaking and MARFE onset due to different connection length of the SOL
magnetic lines [5]. Considering the two extremes at 2.1 and 3.1 T, figure 3 shows that the
radiated power and the gas rate was the same when the same density was reached. During a
fuelling position scan performed at 2.0 MA and 2.5 T it was seen that moving the gas source
from the divertor private flux region to the LFS divertor SOL led to a reduced ion flux (Isar)
to strike points together with a reduction of the D, emission (fig. 4). When puffing from the
outboard, more gas was needed to reach the same upstream density due to better pumping
and, at this stage, the plasma was still in the low recycling regime while, pumping from the
private region, it had reached, at same upstream density, the semi detachment (roll-over).

Detachment and core transport

The electron density was raised both in continuous ramps and in steps up to well
beyond the roll over of the OSP ion saturation current (Isat) which was measured by
Langmuir probes. The roll over took place at the same upstream density irrespective of the
outer strike point position on the divertor central tile. Figure 5 shows divertor parameters
versus the upstream density, taken during a density ramp in HT3L and HT3R configuration.
The red trace of this graph, referring to HT3L configuration, has been cut during a transition
to a higher density regime associated with the development of a little density pedestal while

the electron temperature remained virtually unchanged [6]. The HT3R configuration was
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more resilient to the transition mentioned above and the full trajectory evolved smoothly
towards the detachment.

A general reduction of about one order of magnitude of the Carbon and Oxygen
content was observed with respect to former C-wall operation while no relevant W
accumulation took place in these discharges [1, 6] As regarding the core confinement,
preliminary JETTO [7] modelling shows that particle transport remains of standard Bohm-
gyro-Bohm type and that, assuming ~5% fuelling efficiency, the recycling coefficient, needed
to fit the data, is close to unity. In these simulations, both the fuelling efficiency and the
recycling refer to the particle exchange between the SOL and the core plasma rather than to
the divertor region. Figure 6 shows the capability of the code to reproduce the observed
electron density and temperature profiles under these assumptions. The agreement looks
reasonably good except for the central temperature possibly due to the effect of the sawtooth
which was not taken into account in the simulation.

Conclusion

L-mode density scans at high tringularity showed a toroidal field dependence of the
density limit: higher line average densities were achieved at lower field at same current. Gas
injected into the divertor private region proved to be more efficient, with respect to direct
injection into the SOL, in rasing the density and leading to high recycling. The transition to
detachment (J, roll-over) taook place at similar average density i.e. at ~70% of the density
limit irrespective of the OSP position. When moving the OSP closer to the pumping corner
although staying on central tile (HT3R) somewhat higher DL and reduced recycling was
observed. Code simulations indicate that the core transport remains of the standard Bohm-
gyro-Bohm type and density profiles are compatible with a 5% fuelling efficiency and a
recyclig coefficient close to one.
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