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In tokamaks, improved confinement regimes allow to obtain sufficient core plasma temperatures
to produce self-sustained nuclear fusion reactions. These regimes are characterised by transport
barriers, i.e. radially thin layers where turbulent transport of heat and matter is significantly reduced
leading to a strong increase of the pressure gradient. At the plasma edge, the transport barrier is
typically unstable and exhibits quasi-periodic relaxations associated with high energy fluxes that
can eventually damage the tokamak wall. These barrier relaxations are an essential characteristics
of the so-called Edge Localized Mode (ELMs) [1]. The control of these modes is a critical issue
for the next generation of experimental reactor such as ITER. Studies on tokamaks such as DIII-D
[2], JET [3] and TEXTOR [4] reveal a qualitative control of ELMs by imposing external Resonant
Magnetic Perturbations (RMPs) at the plasma edge.

The control of transport barrier relaxations by RMPs is generally due to a reduction of pressure
gradient by a radial energy flux [5]. This property is generally attributed to the appearence of field
line stochasticity for large RMP amplitudes. However, it is not clear to which extend the externally
induced perturbation actually penetrates into the plasma. Magnetohydrodynamical (MHD) model-
ing has shown an effective screening of RMPs by a rotating plasma [6]. This screening has also
been observed in numerical simulations with an effective velocity at the plasma egde [7].

In previous works, control of barrier relaxations have been studied by three-dimensional edge tur-
bulent simulations in presence of externally induced RMPs [8]. Here, an extension of the previous
electrostatic model is used taking into account self-consistent electromagnetic fluctuations [9]. The
aim is to study the penetration of externally induced RMPs into the plasma. This will allow in a
next step to investigate the effect of turbulence on the RMPs penetration and to study their impact
on transport barrier relaxations.

The model equations used for the plasma pressure p, the electrostatic potential φ an the electro-
magnetic flux ψ are :

(∂t +~uE ·∇)W = − 1
α

∇‖J−Gp+ν∇2
⊥W + µ (W00−Wimp) , (1)

(∂t +~uE ·∇) p = δcGφ + χ‖∇2
‖p+ χ⊥∇2

⊥p+S(x), (2)

∂tψ = −∇‖φ +
1
α

(J− JRMP) . (3)
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Figure 1: Radial profiles of safety factor q (a), heat flux Q(x) =
´ x S(x′)

χ⊥
dx′ (b) and poloidal velocity (c).

Equation (1) corresponds to the vor-
ticity equation, W = ∇2

⊥φ is the vor-
ticity of the E×B flow~uE , J = ∇2

⊥ψ
is the parallel current fluctuation, α is
proportional to the plasma β , i.e. the
ratio of kinetic to magnetic pressure.
G is the magnetic curvature operator,
ν is the viscosity coefficient, µ is the
friction coefficient with the imposed
vorticity Wimp = ∇2

⊥φimp. W00 corre-
sponds to the axisymmetric compo-
nent of W . Eq. (2) describes the energy conservation, χ‖ and χ⊥ are respectively the collisional
heat diffusivities parallel and perpendicular to the magnetic field lines, δc is a curvature parameter,
and S(x) is an energy source modeling the constant heat flux from the plasma core. Eq. (3) cor-
responds to the Ohm’s Law, JRMP is the external current (Fig. 2b, solid curve) generating RMPs.
Simultations are performed with the EMEDGE3D code [10]. Following the standard convention
x, y, z represent respectively the normalized local radial, poloidal and toroidal coordinates. Intro-
ducing the safety factor q(x), the main computational domain corresponds to the volume delimited
by the toroidal surfaces qmin = 2.5 and qmax = 3.5 (Fig. 1a, vertical black dash lines). The energy
source S(x) (Fig. 1b, heat flux profile) is located in the region q < qmin.

In this work, the RMPs penetration is studied with an imposed sheared E×B rotation in the poloidal
direction. Looking for a stationary state of the form (φ , ψ)= (φ00, 0)+(φmn, ψmn)(x)ei(mκyy−nκzz)+
c.c. corresponding to a single harmonic perturbation with mode numbers mκy and nκz in the y

(poloidal) and z (toroidal) directions, respectively, the Ohm’s law (Eq. (3) ) becomes :

0 = i
(

n− m
q(x)

)
κzφmn− imκyψmn∂xφ00 +

1
α

∇2
⊥ψmn (4)

From this Eq. (4), with a plasma rotation (v̄y = ∂xφ00 6= 0) at the resonant surface q = m/n, a current
response is expected Jmn and so the screening of the RMP. Vice-versa, if penetration of the RMP
appears, plasma rotation vanishes at the resonant surface. The efficiency of the screening as a
function of rotation velocity and perturbation amplitude is studied now with the full electromagnetic
turbulence model. In the cases considered here, the total heat flux and the corresponding pressure
gradient are below the resistive ballooning instability limit.

For a single harmonic perturbation, the external current is chosen as Jsingle
RMP = ∇2

⊥ψsingle
RMP with

ψsingle
RMP = ψ0ψm0(x)cos(m0κyy−n0κzz), ψ0 is the overall perturbation amplitude, ψm0(x) describes

the radially increasing perturbation in the vaccum case [8]. The perturbation with wavenumbers
(m0,n0) = (12,4) is resonant at q = q0 = 3. To quantify the screening of the perturbation by the
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Figure 2: Radial profiles of ψm0n0 (a), Jm0n0 (b) in vacuum case (solid curve) and with plasma (Jm0n0 × 100, dash),
and screening factor (c) for different values of v̄y (q = 3).

plasma, a reference case artificially suppressing the plasma response, i.e. the parallel electric field
∇‖φ in the Ohm’s law, is performed. The resulting radial profiles of ψsingle

RMP and Jsingle
RMP in this case

are shown in Figs. 2a and Figs. 2b (solid curve), respectively.

This simulation is compared with a self-consistent case including the plasma response and an ex-
ternally imposed poloidal rotation such that v̄y 6= 0 at the resonant surface q = q0 (Fig. 1c, dash
curve). With respect to the vacuum case, the magnetic perturbation is strongly reduced (Fig. 2a)
by a screening current at the resonant surface (Fig. 2b). Screening can be quantified via the factor
Smn = |ψmn(q=m/n)|/|ψvac

mn (q=m/n)| as a function of the velocity at q0 = m0/n0. The velocity at the reso-
nant surface is modified by displacing the velocity profile in the radial direction (Fig. 2c). When the
plasma is at rest at the resonant surface, v̄y(q = m/n) ≈ 0, the RMP penetrates with Sm0n0 ≥ 80%.
On the contrary, if the plasma rotates at the resonant surface, the screening factor is below 10%.
Note that the velocity profiles considered here are known to generate transport barriers in this resis-
tive balloning model [8, 10]. Moreover, the observed behavior of the screening factor qualitatively
agrees with results from more sophisticated models [7].

In tokamak experiments, RMPs contain multiple harmonic [8]. To study the impact of multiplicity
of present harmonics, a perturbation containing all poloidal resonant modes for one toroidal mode
(n0 = 4) is implemented :

Jmultiple
RMP = ∇2

⊥ψmultiple
RMP with ψmultiple

RMP = ψ0

m=qmaxn0

∑
m=qminn0

(−1)m ψm(x)cos(mκyy−n0κzz) ,

the poloidal spectrum of the perturbation is represented by ψm(x) ( [8] for details). In the case
presented here with v̄y(q0 = 3)≈ 0 (Fig. 1c, solid curve), only the mode m0 = q0n0 = 12 penetrates
(ψm0n0 6= 0), and all the other modes vanish on their corresponding resonant surfaces (Fig. 3a).
This result is explained by the associated current (Fig. 3b). Except for the m = 12 mode, a current
is generated at the positions corresponding to q = 2.5, 2.75, 3.25 and 3.5, i.e. the resonant surface
for the m = 10, 11, 13and14 modes.

The impact of the overall perturbation amplitude ψ0 on the screening factor is plotted on Fig. 3c.
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Figure 3: ψm,4 (a) and Jm,4 (b) for m = 10→ 14. Screening factor (c) as a function of m and ψ0. (a) Full circles
correspond to ψm,4(q = m/4).

The m = 12 mode, which penetrates, is not affected by the modification of ψ0 (screening value
S12,4 > 80%). At the opposite, for the other modes, the screening factor increases with increasing
RMP amplitude (Fig. 4c). Since the resonant surface associated with m = 14 is located on the
simulation boundary, the impact of ψ0 on the screening cannot be interpreted.
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Figure 4: Screening factor as a

function of perturbation amplitude

for a screened mode (m = 11) and a

penetrating mode (m = 12).

In conclusion, we study the penetration of RMPs via numerical
simulations in a reduced MHD model using the three-dimensional
electromagnetic turbulence code EMEDGE3D. In agreement with
previous works, the screening of the external RMP increases with
the plasma rotation and penetration only occurs if the velocity van-
ishes on the corresponding resonant surface. Moreover, the screen-
ing efficiency decreases with increasing RMP amplitude. In future
work, since the model used here is abled to reproduce transport bar-
riers and their relaxation dynamics, the next step will be to charac-
terize the impact of self-consistently RMPs on barrier relaxations.
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