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L. Introduction. Heat transport in magnetized plasmas
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is a problem of fundamental interest in controlled fu- -
condition

sion. Three issues make this problem particularly dif-
ficult: (i) The extreme anisotropy between the paral- Y=’
lel (i.e., along the magnetic field), X, and the per-
pendicular, ) , conductivities; (ii) magnetic field lines

chaos; and (iii) nonlocal parallel flux closures in the

limit of small collisionality. Motivated by the extreme
Source

anisotropy encountered in fusion plasmas, in which the

ratio x| /X may exceed 109, we focus on the study of Figure 1: Schematics of Lagrangian-

purely parallel transport, i.e., ¥, = 0. In Refs.[1,2] we Green’s function (LG) method [1,2].

proposed a Lagrangian-Green’s function (LG) method

(see Fig.1) and applied it to study transport in magnetic field configurations with monotonic
q profiles. The LG method bypasses the need to discretize the transport operators on a grid
and allows the integration of the parallel transport equation without perpendicular pollution,
while preserving the positivity of the temperature field. The method is applicable to local and
non-local parallel flux closures in integrable, weakly chaotic, and fully chaotic magnetic fields.
The goal of this paper is to apply the LG method to study parallel transport in reversed shear

magnetic field line configurations [3].

II. The Lagrangian-Green’s function method. Our starting point is the heat transport equation
for a constant density plasma, 6,7 = —V- (q + quA)) + S, where b = B/|B| is the unit magnetic
vector field, and S is a source. As mention before, we limit attention to parallel transport, i.e.
q. =0, and assume a closure relation between the parallel flux, q| and the temperature, 7', of
the form, ¢ = x| 2 [T, VT]. Depending on the physics of the closure model, 2 can be a linear or
a non-linear, differential or integro-differential operator. In the case of local (diffusive) parallel
closures, 2[T,VT] = —o,T, where dy = b -V, is the directional derivative along the field line.

In the case of non-local parallel closures we assume

Q[T]:—% OOOT(S-FZ)Z_O‘T(S—Z)dK 1
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In general 1 < o < 2, but here we limit atten- () Poincare plot, reversed shear chaotic B field

tion to @ = 1. Assuming tokamak ordering (i.e., 6
the presence of a dominant toroidal magnetic 5
field component) we approximate |(diB) /B| < 4l
|(0;2) /2|, and write the parallel transport i
equation as ?

oT = —xHasQ—f-S. (2) %

Given a time-independent magnetic field, (b) Temperature, shearless transport barrier

B(r), the unique field line path, r = r(s), >

parametrized by the arc-length s, and passing 02

through ro is given by the solution of the initial

value problem Z—E = b, r(s = 0) = ry. As illus-

trated in Fig. 1, the LG method [1,2] is based on 02

the fact that, when q | = 0, given an initial tem- -0.4 X 0 03 o071 os

2
perature distribution Ty(r) = T (r,t = 0), and a v

source S(r,1), the temperature at a given point in

space ry, at a time 7, is obtained by summing all Figure 2: Temperature transport barrier in re-

the contributions of the initial condition and the Versed shear configuration.
source along the magnetic field line path:

T(ro,t) = / T [r(s)] 95 1)ds + /0 't / o;ds’S )Gy, G)

where ¢ is the Green’s function of the parallel transport equation. A key feature of the LG
method is that the computation of 7' at ry at time ¢ does not require the computation of 7 in
the neighborhood of ry, as it is the case in finite different methods, or the computation of 7" at

previous times.

III. Shearless Cantori partial barriers in reversed shear configuration. From the dynami-
cal systems perspective, magnetic fields with non-monotonic g-profiles correspond to nontwist
Hamiltonian systems known to exhibit very robust transport barriers [4]. As a result, reversed
magnetic field configurations typically have barriers to chaotic magnetic field line transport in
the vicinity of the extrema of the g-profile (i.e. shearless regions of the magnetic field). Our
goal is to study the role of these shearless barriers in the transport of temperature. The mag-
netic field used in this study consists of a helical magnetic field with a non-monotonic g-profile

with a single minimum superimposed with twenty one strongly overlapping modes. Figure 2(a)
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shows a Poincare plot for the case when the amplitude of the modes is just below the criti-
cal amplitude for the onset of global chaos. The magnetic field exhibits two strongly chaotic
transport regions (depicted with red and blue dots) separated by a robust shearless transport
barrier. As expected, the resulting radial temperature profile (obtained from the numerical so-
lution of the anisotropic transport equation using the LG method) exhibits two plateaus of
well mixed temperature separated by a strong gradient. Figure 3 shows the evolution of an
initial linear radial profile for the case when the amplitudes of the modes are just above the
critical threshold for the destruction of the shearless transport barrier. Although in this case
there are no transport barriers in the system, the relaxation of the temperature is extremely
small due to the presence of shearless Cantori. As shown in the left panel of Fig.3, in the
early stages, the shearless Cantori reduce the flux and give rise to a partial transport barrier
in the reversed shear region, ¢ = 0. At later times, in direct contradiction with the Fourier-

Fick’s prescription, the flux remains finite in regions where the temperature gradient is zero.

1 v 1

IV. Nondiffusive self-similar scaling and non- s \{ 0s

local effective radial transport U:j U:j

To explore in more detail the role of shear-  °2 0z
less Cantori, we consider the transport of local- T s e oz 53 o os

ized temperature pulse perturbation of the form

To(w) = exp[—(R2y — 0.25)2 /Gg]’ with o = Figure 3: Temperature transport in the pres-

ence of shearless Cantori transport barrier.
0.02. Figure 4 shows the resulting radial tem- P '
Left panel shows the temperature (solid line)

and the flux (dashed line) at r = 100. Right

perature profiles for different parallel closures
and different magnetic field line configurations
obtained from the solution of the parallel heat panel shows the same for ¢ = 5 x 10
transport equation. In Refs. [1,2] it was observed

that in the case of monotonic g-profiles the temperature exhibits self-similar spatio-temporal
evolution of the form (T')(y,1) = (x;t) 12 Ly(n) where n = (w—w)/(th)?’/z is the similar-
ity variable and y the scaling exponent. As shown in Fig.4(a), for monotonic g-profiles with local
(diffusive) parallel closure, the scaling function is an stretched exponential Ly(n) = A e~ /4l
with v ~ 1.6. But for monotonic g-profiles with non-local closure, the scaling function exhibits
1+en2/62} As Figs.4(c) and 4(d) show, these fittings

I+n/uf?

heavy tails well fitted by L;(1) = § {
hold in the vicinity of ¢’ = 0 in the reversed shear configuration, with the interesting exception

that in the local closure case the scaling function becomes exponential (i.e., in this case v = 1.
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In the Standard dlffusion paradlgm’ the (a) Local closure, monotonic q (c) Local closure, reversed shear
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Fourier-Fick’s prescription implies that the ra-

dial heat flux, (q-éy), and the radial tempera- -

satisfy (q-&y) = —Xerr (VT - éy), where Xosy is

the effective diffusivity, and éy, = &, is the unit

(b) Nonlocal closure, monotonic q (d) Nonocal closure, reversed shear
10°

vector in the radial direction. To test the appli-

cability of this relation for temperature trans-
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port in reversed shear chaotic magnetic fields

we computed the radial flux and the radial tem-

perature gradient as functions of the radial flux Figure 4: Comparison between numerically
variable, v, at fixed time. In direct contradic- computed temperature profiles (solid blue)
tion with the Fourier-Fick’s prescription, Fig. 5 and self-similar models (dashed red).
exhibits regions where the temperature gradi-

ent is zero but the flux is finite. Figure 5 also show that the parametric curves ¢ : y —
[—(VT -éy)(y),(q-éy)(y)] in the flux-gradient plane, exhibit multivalued loops which pro-
vides further evidence of the inapplicably of the Fourier-Fick’s prescription with constant ef-

fective radial diffusivity, Xess.
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