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Figure 1: Schematics of Lagrangian-

Green’s function (LG) method [1,2].

I. Introduction. Heat transport in magnetized plasmas

is a problem of fundamental interest in controlled fu-

sion. Three issues make this problem particularly dif-

ficult: (i) The extreme anisotropy between the paral-

lel (i.e., along the magnetic field), χ‖, and the per-

pendicular, χ⊥, conductivities; (ii) magnetic field lines

chaos; and (iii) nonlocal parallel flux closures in the

limit of small collisionality. Motivated by the extreme

anisotropy encountered in fusion plasmas, in which the

ratio χ‖/χ⊥ may exceed 1010, we focus on the study of

purely parallel transport, i.e., χ⊥ = 0. In Refs.[1,2] we

proposed a Lagrangian-Green’s function (LG) method

(see Fig.1) and applied it to study transport in magnetic field configurations with monotonic

q profiles. The LG method bypasses the need to discretize the transport operators on a grid

and allows the integration of the parallel transport equation without perpendicular pollution,

while preserving the positivity of the temperature field. The method is applicable to local and

non-local parallel flux closures in integrable, weakly chaotic, and fully chaotic magnetic fields.

The goal of this paper is to apply the LG method to study parallel transport in reversed shear

magnetic field line configurations [3].

II. The Lagrangian-Green’s function method. Our starting point is the heat transport equation

for a constant density plasma, ∂tT =−∇ ·
(
q⊥+q‖b̂

)
+S, where b̂ = B/|B| is the unit magnetic

vector field, and S is a source. As mention before, we limit attention to parallel transport, i.e.

q⊥ = 0, and assume a closure relation between the parallel flux, q‖, and the temperature, T , of

the form, q‖= χ‖Q[T,∇T ]. Depending on the physics of the closure model, Q can be a linear or

a non-linear, differential or integro-differential operator. In the case of local (diffusive) parallel

closures, Q[T,∇T ] = −∂sT , where ∂s = b̂ ·∇, is the directional derivative along the field line.

In the case of non-local parallel closures we assume

Q[T ] =−λα
π

∫ ∞

0

T (s+ z)−T (s− z)
zα dz . (1)
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Figure 2: Temperature transport barrier in re-

versed shear configuration.

In general 1 ≤ α < 2, but here we limit atten-

tion to α = 1. Assuming tokamak ordering (i.e.,

the presence of a dominant toroidal magnetic

field component) we approximate |(∂sB)/B| �
|(∂sQ)/Q|, and write the parallel transport

equation as

∂tT =−χ‖∂sQ +S . (2)

Given a time-independent magnetic field,

B(r), the unique field line path, r = r(s),

parametrized by the arc-length s, and passing

through r0 is given by the solution of the initial

value problem dr
ds = b̂, r(s = 0) = r0. As illus-

trated in Fig. 1, the LG method [1,2] is based on

the fact that, when q⊥ = 0, given an initial tem-

perature distribution T0(r) = T (r, t = 0), and a

source S(r, t), the temperature at a given point in

space r0, at a time t, is obtained by summing all

the contributions of the initial condition and the

source along the magnetic field line path:

T (r0, t) =
∫ ∞

−∞
T0
[
r(s′)

]
G (s′, t)ds′+

∫ t

0
dt ′
∫ ∞

−∞
ds′S

[
r(s′), t ′

]
G (s′, t− t ′) , (3)

where G is the Green’s function of the parallel transport equation. A key feature of the LG

method is that the computation of T at r0 at time t does not require the computation of T in

the neighborhood of r0, as it is the case in finite different methods, or the computation of T at

previous times.

III. Shearless Cantori partial barriers in reversed shear configuration. From the dynami-

cal systems perspective, magnetic fields with non-monotonic q-profiles correspond to nontwist

Hamiltonian systems known to exhibit very robust transport barriers [4]. As a result, reversed

magnetic field configurations typically have barriers to chaotic magnetic field line transport in

the vicinity of the extrema of the q-profile (i.e. shearless regions of the magnetic field). Our

goal is to study the role of these shearless barriers in the transport of temperature. The mag-

netic field used in this study consists of a helical magnetic field with a non-monotonic q-profile

with a single minimum superimposed with twenty one strongly overlapping modes. Figure 2(a)
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shows a Poincare plot for the case when the amplitude of the modes is just below the criti-

cal amplitude for the onset of global chaos. The magnetic field exhibits two strongly chaotic

transport regions (depicted with red and blue dots) separated by a robust shearless transport

barrier. As expected, the resulting radial temperature profile (obtained from the numerical so-

lution of the anisotropic transport equation using the LG method) exhibits two plateaus of

well mixed temperature separated by a strong gradient. Figure 3 shows the evolution of an

initial linear radial profile for the case when the amplitudes of the modes are just above the

critical threshold for the destruction of the shearless transport barrier. Although in this case

there are no transport barriers in the system, the relaxation of the temperature is extremely

small due to the presence of shearless Cantori. As shown in the left panel of Fig.3, in the

early stages, the shearless Cantori reduce the flux and give rise to a partial transport barrier

in the reversed shear region, q′ = 0. At later times, in direct contradiction with the Fourier-

Fick’s prescription, the flux remains finite in regions where the temperature gradient is zero.

FIG. 5: The left figure is the flux (in blue) and the gradient (in red) for the nonlocal closure.

Both are normalized to the max. The right figure are the flux vs. gradient parametric curves, local

closure is in red, nonlocal is in blue. The times are t = 200 and t = 1 for the local and nonlocal

cases respectively. The left panel shows the gradient −�T · êψ� in red and flux �q · êψ� in blue

normalized to their maximum values for time χ�t = 1.0. The left panel is only for the non-local

closure. The local closure looked similar. The right panel shows the flux-gradient parametric curves

for the diffusive (red) and non-local (blue) closures. In the diffusive closure, χ�t = 200 and in the

non-local closure χ�t = 1.0.
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FIG. 6: Left panel shows the temperature profiles at times t1 = 95 (blue) and t2 = 105 (red) and

the flux averaged over the interval [95, 100]. The flux is normalized to the max. Right panel shows

is the same but t1 = 4e5 and t2 = 6e5.

6

Figure 3: Temperature transport in the pres-

ence of shearless Cantori transport barrier.

Left panel shows the temperature (solid line)

and the flux (dashed line) at t = 100. Right

panel shows the same for t = 5×105.

IV. Nondiffusive self-similar scaling and non-

local effective radial transport

To explore in more detail the role of shear-

less Cantori, we consider the transport of local-

ized temperature pulse perturbation of the form

T0(ψ) = exp[−(R2ψ − 0.25)2/σ2
0 ], with σ0 =

0.02. Figure 4 shows the resulting radial tem-

perature profiles for different parallel closures

and different magnetic field line configurations

obtained from the solution of the parallel heat

transport equation. In Refs. [1,2] it was observed

that in the case of monotonic q-profiles the temperature exhibits self-similar spatio-temporal

evolution of the form 〈T 〉(ψ, t) =
(
χ‖t
)−γ/2 Lα(η) where η = (ψ−ψ)/(χ‖t)γ/2 is the similar-

ity variable and γ the scaling exponent. As shown in Fig.4(a), for monotonic q-profiles with local

(diffusive) parallel closure, the scaling function is an stretched exponential L2(η) = Ae−|η/µ|ν

with ν ≈ 1.6. But for monotonic q-profiles with non-local closure, the scaling function exhibits

heavy tails well fitted by L1(η) = A
2

[
1+e−η2/σ2

1+|η/µ|3

]
. As Figs.4(c) and 4(d) show, these fittings

hold in the vicinity of q′ = 0 in the reversed shear configuration, with the interesting exception

that in the local closure case the scaling function becomes exponential (i.e., in this case ν = 1.
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FIG. 13. (a) show the decay of Tmax and (b) shows the growth of σ2 along with the slopes fitted

lines with slopes (a)− 0.25 and (b) 0.5. Blue is nontwist, red is twist, dashed is fitted
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Figure 4: Comparison between numerically

computed temperature profiles (solid blue)

and self-similar models (dashed red).

In the standard diffusion paradigm, the

Fourier-Fick’s prescription implies that the ra-

dial heat flux, 〈q · êψ〉, and the radial tempera-

ture gradient, 〈∇T · êψ〉, averaged over z and θ ,

satisfy 〈q · êψ〉=−χe f f 〈∇T · êψ〉, where χe f f is

the effective diffusivity, and êψ = êr is the unit

vector in the radial direction. To test the appli-

cability of this relation for temperature trans-

port in reversed shear chaotic magnetic fields

we computed the radial flux and the radial tem-

perature gradient as functions of the radial flux

variable, ψ , at fixed time. In direct contradic-

tion with the Fourier-Fick’s prescription, Fig. 5

exhibits regions where the temperature gradi-

ent is zero but the flux is finite. Figure 5 also show that the parametric curves C : ψ →
[−〈∇T · êψ〉(ψ),〈q · êψ〉(ψ)] in the flux-gradient plane, exhibit multivalued loops which pro-

vides further evidence of the inapplicably of the Fourier-Fick’s prescription with constant ef-

fective radial diffusivity, χe f f .
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FIG. 5: The left figure is the flux (in blue) and the gradient (in red) for the nonlocal closure.

Both are normalized to the max. The right figure are the flux vs. gradient parametric curves, local

closure is in red, nonlocal is in blue. The times are t = 200 and t = 1 for the local and nonlocal

cases respectively. The left panel shows the gradient −�T · êψ� in red and flux �q · êψ� in blue

normalized to their maximum values for time χ�t = 1.0. The left panel is only for the non-local

closure. The local closure looked similar. The right panel shows the flux-gradient parametric curves

for the diffusive (red) and non-local (blue) closures. In the diffusive closure, χ�t = 200 and in the

non-local closure χ�t = 1.0.

FIG. 6: Left panel shows the temperature profiles at times t1 = 95 (blue) and t2 = 105 (red) and

the flux averaged over the interval [95, 100]. The flux is normalized to the max. Right panel shows

is the same but t1 = 4e5 and t2 = 6e5.
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Figure 5: Evidence of non-local effective radial transport

in reversed shear. Left panel shows the flux (blue) and the

temperature gradient (red). Right panel shows multivalued

flux-gradient relations for local parallel closure (red) and

nonlocal parallel closure (blue).
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