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We review the two generic types of toroidal instabilities. isolated modes are the most unstable
and balloon on the outboard side of the tokamak, but can only exist at certain special locations
in the plasma; general modes, which balloon away from the mid-plane, are more stable but
exist at most rational surfaces in the plasma [1]. Based on these results, we propose a new
idea for small ELMs, where the crash is triggered by the sudden onset of a deeply unstable
isolated mode in a pedestal where gradients are at the general mode stability boundary.

We first introduce our model 2D eigenmode equation for the electrostatic potential, ¢, which
describes toroidal drift waves and ion temperature gradient, ITG, modes[2]:
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This model assumes adiabatic electrons and expands the ion response for small ion Larmor
radius, pi, and small drifts compared to the mode frequency, » (normalised to the electron
diamagnetic frequency). The coordinates are poloida angle, 6, and radia distance from a
reference mode rational surface, x, with kg denoting the poloidal wavenumber. Equilibrium
parameters, which depend only on X, are magnetic shear s, o=¢p/(gkopi), en=L/R, L, is the
density scale length, R is the mgor radius and n;>>1 is the ratio of density to temperature
scale lengths. n; provides the drive for the ITG mode that we shall focus on here.

A standard approach to solve Eq (1) isto employ the ballooning transformation [3]:
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The leading order in a large toroidal mode number, n, expansion yields the well-known

ballooning equation for & and the leading order eigenvalue, wo(X,00):
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Note that this involves an arbitrary phase angle, 6o, which can be interpreted as the poloidal
angle about which the mode balloons. 0y is often selected to maximise the growth rate, but a

more rigorous procedure shows it is usually more complicated than this, as we discuss here.
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Figure 1: 2D eigenmode in the poloidal cross-section for a case where 1, has a maximum at x=0 (left) and
one where n; is linear in x (right). All other equilibrium variables are equal in both cases.

To illustrate the importance of the correct trestment of the mode structure, we derive two
globa 2D solutions to Eq (1). In the first, shown in Fig 1 (left), we take al equilibrium
parameters to be independent of x except for n);, for which we adopt a parabolic profile, with a
maximum at x=0. We see the characteristic ballooning on the outboard side and find a growth
rate, Im(w)=0.32. For the second, shown in Fig 1 (right), we do not change the value of any of
the equilibrium parameters at x=0, but now adopt an n; profile that is linear in x. We find a
different mode structure, localised at the plasma top rather than the outboard side, and it is
more stable, with Im(w)=0.24. The solution to the leading order ballooning Eq (3) at x=0 is
identical in both cases, yielding the same m(x=0, 6¢). As shown in Fig 2, the x-dependence of
wo(X,00) differs for each case; while this is a higher order effect, it nevertheless has a leading
order impact on the eigenmode, and the difference between the two 2D mode structures can
be explained in terms of this difference in radial dependence [1], as we now describe.

Rather than use the conventional ballooning transform Eq (2), let us instead use the Fourier-
ballooning representation, presented in Ref [4]:
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The amplitude factor A(6p) contains the fast variation with 6o. Equation (1) is then exactly
transformed into the balooning Eq (3), provided we identify n=6-6o. The eigenvalue
condition is ®=wo(X,00); transforming this into the Fourier-ballooning space, noting
x—(i/nq’)(d/d6y), yields an equation for A(6o) that can be used in Eq (4) to derive ¢(x,0), with
o determined as an eigenvalue of the equation for A. The eigenvalue condition is that A must
be periodic in 6 for ¢ to be periodic in 0. Treating the case with a maximum in the n; profile
first, the top row of Fig 2 illustrates that the local egenvalue is of the form
0=0(0,)+ (0, /2)x*, with @©(8,)=a,(1+&cosd,). Anticipating that A(6) is peaked
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Figure 2: Colour contour plots showing the local ballooning eigenvalue for the peaked n; case (top) and linear

ni(x) case (bottom), for the mode frequency (left) and growth rate (right).

around the stationary point where 6,=0, we expand the cosine to derive:
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This yields a Gaussian for A, which is indeed strongly peaked around 6,=0 with a width
~n 2, It yields an eigenvalue o = @ (1+¢)+O(n™), so the growth rate is the maximum of

Im[wo(X,00)] which, from the top right-hand panel of Fig 2 provides Im(®)=0.32 in excellent
agreement with the 2D result. Because A is peaked around 00=0, it projects out {(60=0, 6) in
Eq (4), explaining the outboard ballooning nature. Note that both the local mode frequency
and the local growth rate must be stationary at the same radial location to expand wp as a
quadratic in x. This can only happen at certain discrete positions in the plasma, so this type of
mode is termed an isolated mode.

More generally we must expandw = 5(90 ) + o, X, and then our eigenmode equation for Ais:
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Requiring A to be periodic in 6, provides an eigenvalue conditionw = <5/ a)x><a);1>_1 , Where

angled brackets denote an average over 6,. Fitting to the lower row of contour plotsin Fig 2,

oy is approximately independent of 8o, so we find Im(w)=Im(@, )= 0.24, again in good
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agreement with the global calculation. The solution of Eq (6)

A= exp[-inq' (o, / o, )sin@, | which is strongly peaked around 8p=n/2. This selects 6=n/2

provides

in the Fourier-ballooning transform, explaining the localisation at the top of the tokamak.

To illustrate how this model might affect ELM size, consider an EPED-type model [5] where
pedestal transport is constrained by atoroidal microinstability (we do not specify which as our
model is generic) and its gradient is constrained by ideal MHD. The upper panels of Fig 3
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Figure 3: Model pedestal pressure profile and related local

isolated mode might look (but thisis
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conditions). Only the genera mode
drives turbulence, which occurs
above the upper boundary at high
gradient. In a stiff transport model
this would constrain the pedesta

gradients, but the pedestal can
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the ideal MHD stability boundary,
when a large type | ELM will be
triggered, as illustrated [5]. Under

boundaries and parameter evolution between ELMs for a case
when no isolated mode can exist (top) and when an isolated
mode can exist along a line of parameter space (bottom). A
critical flow shear, for example, can cause the transition from
general to isolated modes.

certain conditions, eg acritical flow shear, as the pedestal evolves the plasma may encounter a
parameter regime where the isolated mode is allowed as it tracks the general mode stability
boundary. This would trigger an isolated mode with a substantial growth rate (i.e. not at the
marginal stability boundary), driving a large transport event and a small crash in the pedestal
gradients back towards the isolated mode stability boundary, and away from the dangerous
ideal MHD boundary. This could provide an interpretation of the replacement of large type |
ELMs with smaller ones, with mixed small and large ELMs expected in the transition regime.
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