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We review the two generic types of toroidal instabilities: isolated modes are the most unstable

and balloon on the outboard side of the tokamak, but can only exist at certain special locations

in the plasma; general modes, which balloon away from the mid-plane, are more stable but

exist at most rational surfaces in the plasma [1]. Based on these results, we propose a new

idea for small ELMs, where the crash is triggered by the sudden onset of a deeply unstable

isolated mode in a pedestal where gradients are at the general mode stability boundary.

We first introduce our model 2D eigenmode equation for the electrostatic potential, , which

describes toroidal drift waves and ion temperature gradient, ITG, modes [2]:
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This model assumes adiabatic electrons and expands the ion response for small ion Larmor

radius, i, and small drifts compared to the mode frequency,  (normalised to the electron

diamagnetic frequency). The coordinates are poloidal angle, , and radial distance from a

reference mode rational surface, x, with k denoting the poloidal wavenumber. Equilibrium

parameters, which depend only on x, are magnetic shear s, =n/(qki), n=Ln/R, Ln is the

density scale length, R is the major radius and i>>1 is the ratio of density to temperature

scale lengths. i provides the drive for the ITG mode that we shall focus on here.

A standard approach to solve Eq (1) is to employ the ballooning transformation [3]:
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The leading order in a large toroidal mode number, n, expansion yields the well-known

ballooning equation for  and the leading order eigenvalue, 0(x,0):
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Note that this involves an arbitrary phase angle, 0, which can be interpreted as the poloidal

angle about which the mode balloons. 0 is often selected to maximise the growth rate, but a

more rigorous procedure shows it is usually more complicated than this, as we discuss here.
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Figure 1: 2D eigenmode in the poloidal cross-section for a case where I has a maximum at x=0 (left) and

one where i is linear in x (right). All other equilibrium variables are equal in both cases.

To illustrate the importance of the correct treatment of the mode structure, we derive two

global 2D solutions to Eq (1). In the first, shown in Fig 1 (left), we take all equilibrium

parameters to be independent of x except for i, for which we adopt a parabolic profile, with a

maximum at x=0. We see the characteristic ballooning on the outboard side and find a growth

rate, Im()=0.32. For the second, shown in Fig 1 (right), we do not change the value of any of

the equilibrium parameters at x=0, but now adopt an i profile that is linear in x. We find a

different mode structure, localised at the plasma top rather than the outboard side, and it is

more stable, with Im()=0.24. The solution to the leading order ballooning Eq (3) at x=0 is

identical in both cases, yielding the same (x=0, 0). As shown in Fig 2, the x-dependence of

0(x,0) differs for each case; while this is a higher order effect, it nevertheless has a leading

order impact on the eigenmode, and the difference between the two 2D mode structures can

be explained in terms of this difference in radial dependence [1], as we now describe.

Rather than use the conventional ballooning transform Eq (2), let us instead use the Fourier-

ballooning representation, presented in Ref [4]:
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The amplitude factor A(0) contains the fast variation with 0. Equation (1) is then exactly

transformed into the ballooning Eq (3), provided we identify =-0. The eigenvalue

condition is =0(x,0); transforming this into the Fourier-ballooning space, noting

x(i/nq)(d/d0), yields an equation for A(0) that can be used in Eq (4) to derive (x,), with

 determined as an eigenvalue of the equation for A. The eigenvalue condition is that A must

be periodic in 0 for  to be periodic in . Treating the case with a maximum in the i profile

first, the top row of Fig 2 illustrates that the local eigenvalue is of the form

  2
0 )2/( xxx  , with    000 cos1   . Anticipating that A(0) is peaked
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Figure 2: Colour contour plots showing the local ballooning eigenvalue for the peaked i case (top) and linear

i(x) case (bottom), for the mode frequency (left) and growth rate (right).

around the stationary point where 0=0, we expand the cosine to derive:
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This yields a Gaussian for A, which is indeed strongly peaked around 0=0 with a width

~n1/2. It yields an eigenvalue   )(1 1 nO , so the growth rate is the maximum of

Im[0(x,0)] which, from the top right-hand panel of Fig 2 provides Im()=0.32 in excellent

agreement with the 2D result. Because A is peaked around 0=0, it projects out (0=0, ) in

Eq (4), explaining the outboard ballooning nature. Note that both the local mode frequency

and the local growth rate must be stationary at the same radial location to expand 0 as a

quadratic in x. This can only happen at certain discrete positions in the plasma, so this type of

mode is termed an isolated mode.

More generally we must expand   xx  0 , and then our eigenmode equation for A is:
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Requiring A to be periodic in 0 provides an eigenvalue condition
11/

 xx  , where

angled brackets denote an average over 0. Fitting to the lower row of contour plots in Fig 2,

x is approximately independent of 0, so we find     24.0ImIm 0   , again in good
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Figure 3: Model pedestal pressure profile and related local

mode frequency and growth rates (left) together with stability

boundaries and parameter evolution between ELMs for a case

when no isolated mode can exist (top) and when an isolated

mode can exist along a line of parameter space (bottom). A

critical flow shear, for example, can cause the transition from

general to isolated modes.

agreement with the global calculation. The solution of Eq (6) provides

  00 sin/exp  xqinA  which is strongly peaked around 0=/2. This selects 0=/2

in the Fourier-ballooning transform, explaining the localisation at the top of the tokamak.

To illustrate how this model might affect ELM size, consider an EPED-type model [5] where

pedestal transport is constrained by a toroidal microinstability (we do not specify which as our

model is generic) and its gradient is constrained by ideal MHD. The upper panels of Fig 3

show the situation when the maxima

in local frequency and growth rate

are not aligned. The stability

diagram shows a cartoon for how the

marginal stability boundary of the

isolated mode might look (but this is

not accessible to the plasma in these

conditions). Only the general mode

drives turbulence, which occurs

above the upper boundary at high

gradient. In a stiff transport model

this would constrain the pedestal

gradients, but the pedestal can

continue to widen until it encounters

the ideal MHD stability boundary,

when a large type I ELM will be

triggered, as illustrated [5]. Under

certain conditions, eg a critical flow shear, as the pedestal evolves the plasma may encounter a

parameter regime where the isolated mode is allowed as it tracks the general mode stability

boundary. This would trigger an isolated mode with a substantial growth rate (i.e. not at the

marginal stability boundary), driving a large transport event and a small crash in the pedestal

gradients back towards the isolated mode stability boundary, and away from the dangerous

ideal MHD boundary. This could provide an interpretation of the replacement of large type I

ELMs with smaller ones, with mixed small and large ELMs expected in the transition regime.
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