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Toroidal angular momentum transport in tokamaks has become an extremely active research
field. The main cause of radial flux of toroidal angular momentum is microturbulence, and the
appropriate framework to describe microturbulence is gyrokinetic theory: a reduced kinetic the-
ory consisting of the elimination of the degree of freedom associated to the gyration of the
particle around the magnetic field order by order in an asymptotic expansion in € = p/L < 1,
where p is the typical gyroradius and L is the characteristic length of variation of the back-
ground magnetic field. Unfortunately, the toroidal component of the momentum equation that
would give the toroidal component of the velocity and completely determine the radial elec-
tric field is identically satisfied to order €2 by any toroidal velocity [1], whereas gyrokinetic
equations are customarily derived and solved to order €. In Ref. [2], a method to calculate the
toroidal angular momentum in the low flow limit to the lowest non-trivial order is proposed.
The formula for the radial flux of toroidal angular momentum in the electrostatic case is given
as a sum of several integrals over the first and second-order pieces of the distribution functions
and the electrostatic potential. The recent derivation of the gyrokinetic equations and change
of coordinates to second-order in general, static, magnetic geometry [3] permits us to tackle
the problem of formulating a complete model for toroidal momentum transport in turbulent
tokamaks.

In this conference contribution we report on the first step towards our goal: the derivation
of the equations that need to be solved to obtain the long-wavelength pieces of the fields up to
second order. The full computation of such equations allows to give, in parallel, an explicit proof
of the indeterminacy of the radial electric field, showing that it cannot be found from the long-
wavelength gyrokinetic Fokker-Planck and quasineutrality equations correct to second order,
1.e. the turbulent tokamak is intrinsically ambipolar. The following pages are devoted to explain
the main points of the argument leading to the proof of the tokamak intrinsic ambipolarity. The
details are quite involved and technical and can be found in Ref. [4].

The species-independent normalization
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is employed for time, space, vector potential, electrostatic potential, Hamiltonian, particle den-

sity, and temperature; and the species-dependent normalization

3
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for velocities and distribution functions. In the previous expressions L ~ |V, In|B||~! is the typ-
ical length of variation of the magnetic field, By a typical value of the magnetic field strength,
Cs = \/W the sound speed, T, a typical electron temperature, n,( a typical electron density,
and m; the mass of the dominant ion species, that we assume singly charged. Finally, v;¢ is the
thermal speed of species o, & = ps/L, where ps = ¢;/€Q; is a characteristic sound gyroradius,
and Q; = eBy/(m;c) is a characteristic ion gyrofrequency. We take v, = \/m as the ex-
pression for the typical thermal speed, i.e. we assume that T, the characteristic temperature of
electrons, is also the characteristic temperature for all species. The natural, species-independent
expansion parameter in gyrokinetic theory is &. Many expressions, however, are more conve-
niently written in terms of the species-dependent parameter €5 = pg /L, Where ps = vi5/Q0 is
a characteristic gyroradius of species 6 and Qs = ZseBy/(msc) a characteristic gyrofrequency.
Observe that the relation between &5 and & is & = Ag€g, With A = ps/po = Zs \/W .

In dimensionless variables, the Fokker-Planck equation reads
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where H; = V_62/2 +Z&Q, Tc = vig/cs = \/mi/ms, and the Poisson bracket of two functions

g1(r,v), g2(r,v) (we no longer write the subindex ¢ in V) is defined by

{g1,82}x = (Veg1 - Vvg2 — Vvg1 - Veg2) + €5 'B- (Vyg1 x Vyg2). 4)

Here X = (r,v) are the dimensionless cartesian coordinates. As for the quasineutrality equation:

Y7 [ folrv.)dv=0. )

From now on, we drop the underlining and assume that we work in dimensionless variables.
We want to write the Fokker-Planck and quasineutrality equations in gyrokinetic coordinates
Z = (R,u,,0). The transformation from euclidean to gyrokinetic coordinates, X = Z5(Z,1),
up to second order was computed for the first time in [3]. Denote by .7 the pull-back of 7.
Acting on a function g(X,t), 75 g(Z,t) is simply the function g written in coordinates Z, i.e.
T58(ZL,t) = g(T5(Z,t),t). Now, define by Fs := .7 fs the distribution function in gyrokinetic

coordinates. Using the notation F =) €5 F5,, one finds [4] that to order zero the distribution
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function is Maxwellian,

(6)
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and that to order one and two the long-wavelength Fokker-Planck equation has the following

form:
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Here Fé‘;v is the long-wavelength component of F;. We refer the reader to [4] for a thorough
discussion on ordering and scale separation issues and for the terms omitted in (7).

If Fcly‘;v, i = 1,2 are solutions of the first and second-order Fokker-Planck equations, then so

are F1W+hm, i=1,2, where

hoi = |2y (FEIREE )9 8

for an arbitrary set of flux functions {ns;(y,), Tsi(Y,t) } 5, with the only restriction 75 ; = Ty,

for all o, . Once we have learnt this, let us turn to the quasineutrality equation. To order &”

we have ¥ ; Zsng(r,t) = 0. To order &:
ZG ZG 1w
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and to order 852 (again, see [4] for the full expressions):
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Even though ¢y (), the lowest-order electrostatic potential, enters the long-wavelength quasineu-

+---=0. (10)

trality equation to second-order, it cannot be determined. The first and second-order pieces of
the long-wavelength quasineutrality equation simply give constraints on the corrections ns| and
ng2. Each function ng; will be determined by a transport equation that appears as a solvabil-
ity condition for a higher order long-wavelength piece of the Fokker-Planck equation, just as a
transport equation for n¢ is derived in [4] and shown below.

The task of proving that the radial electric field is undetermined, or equivalently, that the tur-
bulent tokamak is intrinsically ambipolar, has not been accomplished yet. As in the Chapman-
Enskog theory of neutral gases, the equation for the distribution function to order €., possesses,

in general, solvability conditions. This means that the existence of a solution of the equation to
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order €. implies a new equation involving lower-order quantities (obtained from the solution
of the equations to order e/, J < i). Indeed, the second-order Fokker-Planck equation yields, as
solvability conditions, transport equations for the lowest order density and temperature func-

tions ng and 7. Concretely,
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The zeroth-order piece of the long-wavelength quasineutrality equation imposes the condi-

tion ) 5 Zsns = 0 on the lowest order particle densities. On the other hand, we have obtained as
a solvability condition of the long-wavelength second-order Fokker-Planck equation a time evo-
lution equation for each function ns, (11). Thus, we can deduce a time evolution equation for
Y o Zong. It is important to find out whether d; Y 5 Zsns = 0 automatically or, on the contrary,
its fulfillment implies additional constraints on lower-order quantities. With all the ingredients
mentioned in this paper, it can be shown rigorously (see reference [4]) that d; Y s Zons = 0 au-

tomatically, so the tokamak is intrinsically ambipolar even in the presence of microturbulence.
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