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Toroidal angular momentum transport in tokamaks has become an extremely active research

field. The main cause of radial flux of toroidal angular momentum is microturbulence, and the

appropriate framework to describe microturbulence is gyrokinetic theory: a reduced kinetic the-

ory consisting of the elimination of the degree of freedom associated to the gyration of the

particle around the magnetic field order by order in an asymptotic expansion in ε = ρ/L� 1,

where ρ is the typical gyroradius and L is the characteristic length of variation of the back-

ground magnetic field. Unfortunately, the toroidal component of the momentum equation that

would give the toroidal component of the velocity and completely determine the radial elec-

tric field is identically satisfied to order ε2 by any toroidal velocity [1], whereas gyrokinetic

equations are customarily derived and solved to order ε . In Ref. [2], a method to calculate the

toroidal angular momentum in the low flow limit to the lowest non-trivial order is proposed.

The formula for the radial flux of toroidal angular momentum in the electrostatic case is given

as a sum of several integrals over the first and second-order pieces of the distribution functions

and the electrostatic potential. The recent derivation of the gyrokinetic equations and change

of coordinates to second-order in general, static, magnetic geometry [3] permits us to tackle

the problem of formulating a complete model for toroidal momentum transport in turbulent

tokamaks.

In this conference contribution we report on the first step towards our goal: the derivation

of the equations that need to be solved to obtain the long-wavelength pieces of the fields up to

second order. The full computation of such equations allows to give, in parallel, an explicit proof

of the indeterminacy of the radial electric field, showing that it cannot be found from the long-

wavelength gyrokinetic Fokker-Planck and quasineutrality equations correct to second order,

i.e. the turbulent tokamak is intrinsically ambipolar. The following pages are devoted to explain

the main points of the argument leading to the proof of the tokamak intrinsic ambipolarity. The

details are quite involved and technical and can be found in Ref. [4].

The species-independent normalization

t =
cst
L

, r =
r
L
, A =

A
B0L

, ϕ =
eϕ

εsTe0
, Hσ =

Hσ
Te0

, nσ =
nσ
ne0

, Tσ =
Tσ
Te0

, (1)
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is employed for time, space, vector potential, electrostatic potential, Hamiltonian, particle den-

sity, and temperature; and the species-dependent normalization

vσ =
vσ
vtσ

, fσ =
v3

tσ
ne0

fσ , (2)

for velocities and distribution functions. In the previous expressions L∼ |∇r ln |B||−1 is the typ-

ical length of variation of the magnetic field, B0 a typical value of the magnetic field strength,

cs =
√

Te0/mi the sound speed, Te0 a typical electron temperature, ne0 a typical electron density,

and mi the mass of the dominant ion species, that we assume singly charged. Finally, vtσ is the

thermal speed of species σ , εs = ρs/L, where ρs = cs/Ωi is a characteristic sound gyroradius,

and Ωi = eB0/(mic) is a characteristic ion gyrofrequency. We take vtσ =
√

Te0/mσ as the ex-

pression for the typical thermal speed, i.e. we assume that Te0, the characteristic temperature of

electrons, is also the characteristic temperature for all species. The natural, species-independent

expansion parameter in gyrokinetic theory is εs. Many expressions, however, are more conve-

niently written in terms of the species-dependent parameter εσ = ρσ/L, where ρσ = vtσ/Ωσ is

a characteristic gyroradius of species σ and Ωσ = Zσ eB0/(mσ c) a characteristic gyrofrequency.

Observe that the relation between εσ and εs is εs = λσ εσ , with λσ = ρs/ρσ = Zσ
√

mi/mσ .

In dimensionless variables, the Fokker-Planck equation reads

∂t fσ + τσ
{

fσ ,Hσ
}

X = τσ ∑
σ ′

Cσσ ′[ fσ , fσ ′](r,v), (3)

where Hσ = vσ
2/2+Zεsϕ , τσ = vtσ/cs =

√
mi/mσ , and the Poisson bracket of two functions

g1(r,v), g2(r,v) (we no longer write the subindex σ in vσ ) is defined by

{g1,g2}X =
(
∇rg1 ·∇vg2−∇vg1 ·∇rg2

)
+ ε−1

σ B · (∇vg1×∇vg2). (4)

Here X≡ (r,v) are the dimensionless cartesian coordinates. As for the quasineutrality equation:

∑
σ

Zσ

∫
fσ (r,v, t)d3v = 0. (5)

From now on, we drop the underlining and assume that we work in dimensionless variables.

We want to write the Fokker-Planck and quasineutrality equations in gyrokinetic coordinates

Z ≡ (R,u,µ,θ). The transformation from euclidean to gyrokinetic coordinates, X = Tσ (Z, t),

up to second order was computed for the first time in [3]. Denote by T ∗
σ the pull-back of Tσ .

Acting on a function g(X, t), T ∗
σ g(Z, t) is simply the function g written in coordinates Z, i.e.

T ∗
σ g(Z, t) = g(Tσ (Z, t), t). Now, define by Fσ := T ∗

σ fσ the distribution function in gyrokinetic

coordinates. Using the notation Fσ = ∑∞
n=0 εn

σ Fσn, one finds [4] that to order zero the distribution
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function is Maxwellian,

Fσ0(R,u,µ, t) =
nσ (R, t)

(2πTσ (R, t))3/2 exp
(
−µB(R)+u2/2

Tσ (R, t)

)
, (6)

and that to order one and two the long-wavelength Fokker-Planck equation has the following

form:

(
ub̂ ·∇R−µb̂ ·∇RB∂u

)
F lw

σ i = ∑
σ ′

T ∗
σ ,0Cσσ ′

[
T −1∗

σ ,0 F lw
σ i ,T

−1∗
σ ′,0 Fσ ′0

]

+∑
σ ′

(
λσ
λσ ′

)i

T ∗
σ ,0Cσσ ′

[
T −1∗

σ ,0 Fσ0,T
−1∗

σ ′,0 F lw
σ ′i

]
+ . . . . (7)

Here F lw
σ i is the long-wavelength component of Fσ i. We refer the reader to [4] for a thorough

discussion on ordering and scale separation issues and for the terms omitted in (7).

If F lw
σ i , i = 1,2 are solutions of the first and second-order Fokker-Planck equations, then so

are F lw
σ i +hσ i, i = 1,2, where

hσ i =
[

nσ i

nσ
+
(

µB+u2/2
Tσ

− 3
2

)
Tσ i

Tσ

]
Fσ0, (8)

for an arbitrary set of flux functions {nσ i(ψ, t),Tσ i(ψ, t)}σ , with the only restriction Tσ j = Tσ ′ j,

for all σ ,σ ′. Once we have learnt this, let us turn to the quasineutrality equation. To order ε0
s

we have ∑σ Zσ nσ (r, t) = 0. To order εs:

∑
σ

Zσ
λσ

nσ1 +∑
σ

Zσ
λσ

∫
B(r)F lw

σ1(r,u,µ, t)dudµdθ = 0, (9)

and to order ε2
s (again, see [4] for the full expressions):

∑
σ

Zσ
λ 2

σ
nσ2 +∑

σ

Zσ
λ 2

σ

[∫
BF lw

σ2dudµdθ +∇r ·
(

Zσ nσ
B2 ∇rϕ0

)]
+ · · ·= 0. (10)

Even though ϕ0(ψ), the lowest-order electrostatic potential, enters the long-wavelength quasineu-

trality equation to second-order, it cannot be determined. The first and second-order pieces of

the long-wavelength quasineutrality equation simply give constraints on the corrections nσ1 and

nσ2. Each function nσ i will be determined by a transport equation that appears as a solvabil-

ity condition for a higher order long-wavelength piece of the Fokker-Planck equation, just as a

transport equation for nσ is derived in [4] and shown below.

The task of proving that the radial electric field is undetermined, or equivalently, that the tur-

bulent tokamak is intrinsically ambipolar, has not been accomplished yet. As in the Chapman-

Enskog theory of neutral gases, the equation for the distribution function to order ε i
σ possesses,

in general, solvability conditions. This means that the existence of a solution of the equation to
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order ε i
σ implies a new equation involving lower-order quantities (obtained from the solution

of the equations to order ε j, j < i). Indeed, the second-order Fokker-Planck equation yields, as

solvability conditions, transport equations for the lowest order density and temperature func-

tions nσ and Tσ . Concretely,

∂ε2
s tnσ (ψ, t) =

1
V ′(ψ)

∂ψ

〈
V ′(ψ)

∫
dudµdθ

{
[
Fsw

σ1 (∇R⊥/εσ 〈φ sw
σ1〉× b̂) ·∇Rψ

]lw

+
B

Zσ λσ

〈(
Iu
B

+ρ ·∇Rψ
)

∑
σ ′

C(1)lw
σσ ′

〉}〉

ψ

, (11)

and

∂ε2
s t

(
∑
σ

3
2

nσ (ψ, t)Tσ (ψ, t)

)
=

1
V ′(ψ)

∂ψ

〈
V ′(ψ)

∫ (
u2/2+ µB

)
∑
σ

{
[
Fsw

σ1 (∇R⊥/εσ 〈φ sw
σ1〉× b̂) ·∇Rψ

]lw

+
B

Zσ λσ

〈(
Iu
B

+ρ ·∇Rψ
)

∑
σ ′

T ∗
σ ,0C(1)lw

σσ ′

〉}
dudµdθ

〉

ψ

−
〈

∑
σ

∫
B

[
Fsw

σ1

(
ub̂ ·∇R〈φ sw

σ1〉+
µ
B

(b̂×∇RB) ·∇R⊥/εσ 〈φ sw
σ1〉

+
u2

B
[b̂× (b̂ ·∇Rb̂)] ·∇R⊥/εσ 〈φ sw

σ1〉
)]lw

dudµdθ

〉

ψ

+

〈
∑

σ ,σ ′

τσ
λ 2

σ

∫
B
(
u2/2+ µB

)[〈
T ∗

σ ,1C(1)sw
σσ ′

〉]lw
dudµdθ

〉

ψ

. (12)

The zeroth-order piece of the long-wavelength quasineutrality equation imposes the condi-

tion ∑σ Zσ nσ = 0 on the lowest order particle densities. On the other hand, we have obtained as

a solvability condition of the long-wavelength second-order Fokker-Planck equation a time evo-

lution equation for each function nσ , (11). Thus, we can deduce a time evolution equation for

∑σ Zσ nσ . It is important to find out whether ∂t ∑σ Zσ nσ ≡ 0 automatically or, on the contrary,

its fulfillment implies additional constraints on lower-order quantities. With all the ingredients

mentioned in this paper, it can be shown rigorously (see reference [4]) that ∂t ∑σ Zσ nσ ≡ 0 au-

tomatically, so the tokamak is intrinsically ambipolar even in the presence of microturbulence.
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