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Hydrodynamic instabilities are a key issue in laser-drivesrtial confinement fusion where
a sufficiently uniform implosion of a spherical pellet is exped to achieve thermonuclear burn.
Little attention has been devoted to the early shell-iatidn stage of the pellet implosion com-
pared to the subsequent shell-acceleration phase duriiodp Wie ablative Rayleigh—Taylor in-
stability occurs. Our ongoing project aims at obtaining tidyelescription of the hydrodynamic
stability of this early shell irradiation flow. Using selirsilar ablative heat-wave solutions of
gas dynamics equations with nonlinear heat conductiondhean flows and devising, in this
simplified setting, a spectrally accurate numerical metivocbmpute both these solutions and
their time-dependent linear perturbations, has allowetbuslfill this goal [2]. Here we pro-
pose to extend this approach to the supersonic heat-wawaeaeghich is relevant to the very
early irradiation phase of the shell, prior to its ablatitm.doing so, we also wish to obtain
a detailed description of the isothermal-shock-wave-#redmal-precursor structure present in
ablative flows in order to remove the restriction of the petrfghock-wave front approximation

of this structure which was used in [1, 2].

Mean flow

The flows we consider are those resulting from applying tdependent external heat flux
and pressure at the free boundary of a semi-infinite slab adrapecessible, inviscid, heat-
conducting fluid with a polytropic equation of stgte= pRT, & =C, T, C, = R/(y— 1), and
a nonlinear conductivity of the formm = x (p/po)™ (T /To)", m < 0, n# 1, wherepy and Ty
are some standard density and temperature. The corresgpegliations of motion, written in

terms of the Lagrangian coordinate such thatim= p dx, come as

atﬁ‘szdm\_/x = 07 at\_/x‘f‘dmrj = 07

_ form > 0, (1)
0(V2/2+ &) + Om(PW%h+ @) = O, with @, = —KD T,

where the symbols used have their usual meanings. Assuhmeniguid to be initially homoge-
neous, cold and at rest, self-similar solutions to thiseysbf equations may be obtained upon
considering specific time-power laws for the external Hfeat-and pressure [3]. Such solutions

cover the supersonic heat-wave regime which prevails duha early shell irradiation, where a
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supersonic heat wave preceding an isothermal shock waetrpées the otherwise undisturbed

shell. Self-similar solutions to (1) come as [1]
G(¢) =p(m1), V(§) =t e(mt), B(&) =t*T I T(mt), ®(§) =37 Vg, (mt), (2)

whereé =mt 9, o = (2n—1)/(2n—2), and are solutions to a nonlinear eigenvalue problem

which consists in a four-dimensional system of first-ord®&&3, of the form
d:Y =.7(£.Y), where Y(§)=(G,V,0,9)T, (3)
with boundary conditions
G=1 V=0, ©=0, as&—+wo, P=GO0=%, ®=%By, at {=0. (4)

Sought solutions present an isothermal shock-wave frayt,asé = &s, which corresponds
to the essential singularity (sonic hyperplane) [4] of eysi(3), and a heat-wave front &t=

& > &s, for which this system degenerates into a three-dimenkgyséem. This thermal-front
singularity is characterised by the following root-brart@haviors of the flow reduced variables
(e.g.see [4])

G~14Gé, V~Vgé, O~0yé, as &é=(1-&/&)Y"—0". (5)

The sonic-hyperplane singularity is circumvented by apyhe isothermal shock-wave jump
relations while the thermal-front singularity is handleg gerforming the change of variables
§— E Y(&) = ?(E) in the front vicinity, and retaining there the corresporgiformulations
of (3) and (4).

A numerical procedure, based on the multi-domain Chebyspectral method of [1], has
been devised to compute solutions to the boundary valuelggroBVP) made of egs. (3)
and (4). This procedure makes use of this Bi/-IR)rmuIation for sub-domains in the thermal-
front neighborhood, while keeping itsformulation for the rest of the flow. Using the shock-
front and thermal-front locationgg andé;;, as input parameters, the procedure applies a relax-
ation process in each computational sub-domain, stantorg fin initial guess obtaingd by
the leading-order approximation (5) within the thermalrfr sub-domain, andi) by a finite-
difference shooting method for the other sub-domains. Sg@leaccurate results over the whole
interval 0< & < &4, and which are free from the approximation errors made in &8 thus
obtained.

This numerical procedure is capable of treating a wide waoéflows (see Fig. 1), ranging
from negligible € = 0.75) to significant { = 3.07) supersonic heat-waves, and thus spanning
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Figure 1: Pressure (top) and heat flux (bottom) reduced masgor(m, n) = (0,5/2), three lo-
cations of the thermal-fron€; = 0.75, 1 and 37, and different shock-front position valués

the whole range of configurations between the ablative aadtipersonic heat-wave regimes.
This enables us to explore larger regions of the boundanglition (%, , %p)-parameter space
than those allowed by the perfect shock-front approxinmatsee [1, Fig. 6]. This includes the
capability of recovering solutions previously obtainedhin this perfect shock-front approxi-
mation (compare the curvég = 0.75 andé; = 1.0 of Fig. 2 with thosés=0.75 andés = 1.0 of

[1, Fig. 6]) but also, for a fixed shock-front location, of dabing flows at higher (lower) exter-
nal heat fluxes (pressures) than previously allowed (cégve 1.0 of Fig. 2 andés = 1.0 of [1,
Fig. 6]). Variations of the shock-front locatiafa for a given thermal-front abscis€a (Fig. 1)
highlight the thickening of the supersonic heat-

wave extent when increasing the external heat-flux *

and decreasing the external pressure. For the small-

10 ¢

est values of the thermal-front abscis§a (¢ =
0.75 and&; = 1.0 in Fig. 1), the corresponding®

flows range from the isothermal shock-wave prop-

agation regime (lowes#y, highest#)) to the ab-
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For the Iargest value dtf (Etf =3.07in F|g 1), the Figure 2: Lines of Constanftf in the
flows belong to the supersonic heat-wave regime(@¢7@p)_space fo(m,n) = (0,5/2).

lative heat-wave regime (highesfy, lowest%y).
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Linear perturbations
Following [2], the linear stability of these self-similaoWs is investigated using an Eule-
rian description—in thém,y, z)-coordinate system—of the flow linear perturbations, say,

Vi (=wey + V&), p, T, the relevant system of PDEs reading then

&P+ P (OmP Vx + P OmVx + OmVx o+ 0, - V') =0,

Gt Vx + P OmVx Vx + OmP — dmP p/P = 0,

av/+0,p/p =0,

Cv(AT+P0mT W) + P OV T+ P OV + Omx + (PO VT — myp+ 01 - 61 ) /P =0,

(6)

wherell;, = (dy,dz)T. In practice [2], theyzFourier transform of this systeld+formulation is
considered so that perturbation variables are replacelddiyfourier components of transverse-
wavenumber moduluk, : see eq. (7) below. The presence of the mean-flow reduceéablar
¢-derivatives as coefficients of the perturbation PDEs amdsihgular behavior (5) of these
derivatives at the thermal-frogt= & call for a specific treatment there. This treatment consists
in the change of variablés— E Q— (3 for any of the dependent variabl@sntroduced in (2),

as summarized by the relation
Fyvz A F1-nQ(F
q<m7y7 th) - Q(E?kLvt) = E Q(EvkL7t) (7)

The resulting formulations of (6) and of the linear-pertatibn boundary conditions at the
thermal-front, guarantee that the new perturbation vwsé remain finite there.

The numerical method that we are still currently develodimrgcomputing solutions to (6)
in the present case, builds up upon the multi-domain Chedwspectral method devised in the
perfect-shock-front approximation case [2], but impletsendouble formulation of the pertur-
bation PDEs: the previoug, 6)-formulation for the flow region downstream to the isotherma
shock-front (0< & < &) and the nevx(f,é)-formulation for the supersonic heat-wave region

(Es <& < Etf)-

References
[1] C. Boudesocque-Dubois, S. Gauthier and J.-M. Clarids€éluid Mech603 151 (2008).

[2] J.-M. Clarisse, C. Boudesocque-Dubois and S. Gauthiéuid Mech609, 1 (2008).
[3] Ya. B. Zel'dovich and Yu. P. Raizer, Academic Press (1967

[4] P. Reinicke and J. Meyer-ter-Vehn, Phys. Fluid8,A807 (1991).



