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Hydrodynamic instabilities are a key issue in laser-driveninertial confinement fusion where

a sufficiently uniform implosion of a spherical pellet is expected to achieve thermonuclear burn.

Little attention has been devoted to the early shell-irradiation stage of the pellet implosion com-

pared to the subsequent shell-acceleration phase during which the ablative Rayleigh–Taylor in-

stability occurs. Our ongoing project aims at obtaining a better description of the hydrodynamic

stability of this early shell irradiation flow. Using self-similar ablative heat-wave solutions of

gas dynamics equations with nonlinear heat conduction [1] as mean flows and devising, in this

simplified setting, a spectrally accurate numerical methodto compute both these solutions and

their time-dependent linear perturbations, has allowed usto fulfill this goal [2]. Here we pro-

pose to extend this approach to the supersonic heat-wave regime which is relevant to the very

early irradiation phase of the shell, prior to its ablation.In doing so, we also wish to obtain

a detailed description of the isothermal-shock-wave-and-thermal-precursor structure present in

ablative flows in order to remove the restriction of the perfect shock-wave front approximation

of this structure which was used in [1, 2].

Mean flow

The flows we consider are those resulting from applying time-dependent external heat flux

and pressure at the free boundary of a semi-infinite slab of a compressible, inviscid, heat-

conducting fluid with a polytropic equation of statep = ρRT, E = CvT, Cv = R/(γ−1), and

a nonlinear conductivity of the formκ = χ (ρ/ρ0)m(T/T0)n, m≤ 0, n 6= 1, whereρ0 andT0

are some standard density and temperature. The corresponding equations of motion, written in

terms of the Lagrangian coordinatem, such thatdm= ρ dx, come as

∂tρ +ρ2∂mvx = 0, ∂tvx +∂mp = 0,

∂t
(
v2

x/2+E
)
+∂m

(
pvx +ϕx

)
= 0, with ϕx =−κ ρ ∂mT ,

for m≥ 0, (1)

where the symbols used have their usual meanings. Assuming the fluid to be initially homoge-

neous, cold and at rest, self-similar solutions to this system of equations may be obtained upon

considering specific time-power laws for the external heat-flux and pressure [3]. Such solutions

cover the supersonic heat-wave regime which prevails during the early shell irradiation, where a
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supersonic heat wave preceding an isothermal shock wave penetrates the otherwise undisturbed

shell. Self-similar solutions to (1) come as [1]

G(ξ ) = ρ (m, t), V(ξ ) = tα−1vx(m, t), Θ(ξ ) = t2(α−1) T(m, t), Φ(ξ ) = t3(α−1) ϕx(m, t), (2)

whereξ = mt−α , α = (2n−1)/(2n−2), and are solutions to a nonlinear eigenvalue problem

which consists in a four-dimensional system of first-order ODEs, of the form

dξ Y = F (ξ , Y), where Y(ξ ) = (G, V , Θ, Φ)T, (3)

with boundary conditions

G = 1, V = 0, Θ = 0, as ξ →+∞, P = GΘ = Bp, Φ = Bϕ , at ξ = 0. (4)

Sought solutions present an isothermal shock-wave front, say at ξ = ξs, which corresponds

to the essential singularity (sonic hyperplane) [4] of system (3), and a heat-wave front atξ =

ξtf > ξs, for which this system degenerates into a three-dimensional system. This thermal-front

singularity is characterised by the following root-branchbehaviors of the flow reduced variables

(e. g.see [4])

G∼ 1+Gtf ξ̆ , V ∼V tf ξ̆ , Θ ∼ Θtf ξ̆ , as ξ̆ = (1−ξ/ξtf)1/n→ 0+. (5)

The sonic-hyperplane singularity is circumvented by applying the isothermal shock-wave jump

relations while the thermal-front singularity is handled by performing the change of variables

ξ → ξ̆ , Y(ξ ) = Y̆(ξ̆ ) in the front vicinity, and retaining there the corresponding formulations

of (3) and (4).

A numerical procedure, based on the multi-domain Chebyshevspectral method of [1], has

been devised to compute solutions to the boundary value problem (BVP) made of eqs. (3)

and (4). This procedure makes use of this BVPξ̆ -formulation for sub-domains in the thermal-

front neighborhood, while keeping itsξ -formulation for the rest of the flow. Using the shock-

front and thermal-front locations,ξs andξtf, as input parameters, the procedure applies a relax-

ation process in each computational sub-domain, starting from an initial guess obtained(i) by

the leading-order approximation (5) within the thermal-front sub-domain, and(ii) by a finite-

difference shooting method for the other sub-domains. Spectral accurate results over the whole

interval 0≤ ξ ≤ ξtf, and which are free from the approximation errors made in (5), are thus

obtained.

This numerical procedure is capable of treating a wide variety of flows (see Fig. 1), ranging

from negligible (ξtf = 0.75) to significant (ξtf = 3.07) supersonic heat-waves, and thus spanning
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Figure 1: Pressure (top) and heat flux (bottom) reduced variables for(m,n) = (0,5/2), three lo-

cations of the thermal-front,ξtf = 0.75, 1 and 3.07, and different shock-front position valuesξs.

the whole range of configurations between the ablative and the supersonic heat-wave regimes.

This enables us to explore larger regions of the boundary-condition (Bϕ ,Bp)-parameter space

than those allowed by the perfect shock-front approximation: see [1, Fig. 6]. This includes the

capability of recovering solutions previously obtained within this perfect shock-front approxi-

mation (compare the curvesξtf = 0.75 andξtf = 1.0 of Fig. 2 with thoseξs= 0.75 andξs= 1.0 of

[1, Fig. 6]) but also, for a fixed shock-front location, of describing flows at higher (lower) exter-

nal heat fluxes (pressures) than previously allowed (curveξtf = 1.0 of Fig. 2 andξs = 1.0 of [1,

Fig. 6]). Variations of the shock-front locationξs for a given thermal-front abscissaξtf (Fig. 1)
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Figure 2: Lines of constantξtf in the

(Bϕ ,Bp)-space for(m,n) = (0,5/2).

highlight the thickening of the supersonic heat-

wave extent when increasing the external heat-flux

and decreasing the external pressure. For the small-

est values of the thermal-front abscissaξtf (ξtf =

0.75 andξtf = 1.0 in Fig. 1), the corresponding

flows range from the isothermal shock-wave prop-

agation regime (lowestBϕ , highestBp) to the ab-

lative heat-wave regime (highestBϕ , lowestBp).

For the largest value ofξtf (ξtf = 3.07 in Fig. 1), the

flows belong to the supersonic heat-wave regime.
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Linear perturbations

Following [2], the linear stability of these self-similar flows is investigated using an Eule-

rian description—in the(m,y,z)-coordinate system—of the flow linear perturbations, sayρ, vx,

v⊥(= vyey +vzez), p, T, the relevant system of PDEs reading then

∂tρ +ρ
(
∂mρ vx +ρ ∂mvx +∂mvx ρ +∇⊥·−→v⊥

)
= 0,

∂tvx +ρ∂mvxvx +∂mp−∂mpρ/ρ = 0,

∂t
−→v⊥+∇⊥p/ρ = 0,

Cv
(
∂tT+ρ ∂mT vx

)
+ρ ∂mvxT+ p∂mvx +∂mϕx +

(
p∇⊥·−→v⊥−∂mϕxρ +∇⊥·−→ϕ⊥

)
/ρ = 0,

(6)

where∇⊥ = (∂y,∂z)T. In practice [2], theyz-Fourier transform of this systemξ -formulation is

considered so that perturbation variables are replaced by their Fourier components of transverse-

wavenumber modulusk⊥: see eq. (7) below. The presence of the mean-flow reduced-variable

ξ -derivatives as coefficients of the perturbation PDEs and the singular behavior (5) of these

derivatives at the thermal-frontξ = ξtf call for a specific treatment there. This treatment consists

in the change of variablesξ → ξ̆ , Q̂→ ˘̂Q, for any of the dependent variablesQ introduced in (2),

as summarized by the relation

q(m,y,z, t)
Fyz−→ Q̂(ξ ,k⊥, t) = ξ̆ 1−n ˘̂Q(ξ̆ ,k⊥, t). (7)

The resulting formulations of (6) and of the linear-perturbation boundary conditions at the

thermal-front, guarantee that the new perturbation variables ˘̂Q remain finite there.

The numerical method that we are still currently developingfor computing solutions to (6)

in the present case, builds up upon the multi-domain Chebyshev spectral method devised in the

perfect-shock-front approximation case [2], but implements a double formulation of the pertur-

bation PDEs: the previous(ξ ,Q̂)-formulation for the flow region downstream to the isothermal

shock-front (0≤ ξ ≤ ξs) and the new(ξ̆ ,
˘̂Q)-formulation for the supersonic heat-wave region

(ξs≤ ξ ≤ ξtf).
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