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Abstract 

The nonlinear amplitude modulation and envelope solitons of ion acoustic wave are studied in 

the presence of warm ions in unmagnetized electron-positron-ion plasmas. The Krylov-

Bogoliubov-Mitropolsky (KBM) method is used to derive the nonlinear Schrödinger equation. 

The dispersive and nonlinear coefficients are obtained which depends on the ion temperature 

and positron density in electron-positron-ion plasmas. The modulationally stable and unstable 

regions are studied numerically for a wide range of wave number. It is found that both ion 

temperature and positron density plays significant role in the formation of bright and dark 

envelope solitons in electron-positron-ion plasmas. 

1. Set of Dynamic Equations 

The basic set of normalized fluid equations for nonlinear propagation of ion acoustic waves 

with warm ions and isothermal Boltzmann distributed electrons and positrons are given as 

follows:  

                                                                          (1) 

                                                       (2) 

                                                              (3) 

                             (4) 

where electric field intensity is defined as  and is the electrostatic potential. The 

normalized ion density and velocity are defined as  and  respectively and ion 

acoustic speed is defined as  . The normalization of time and space is done with 
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inverse of ion plasma frequency and effective Debye length   respectively, which are 

defined as   and   . The normalized electrostatic potential and 

ion pressure are defined as  and  where  has been defined and  is 

the ion temperature. It has also been assumed that  and positron to ion density ratio 

has been defined as  so that  and  which lies in the range  

while ion to electron temperature ratio is defined . The equilibrium has 

been defined. The equilibrium density of electrons and positrons are denoted as  , 

while  is the electron (positron) temperature measured in the energy units.  We have 

assumed the same temperature of positrons and electrons because in ion dynamic scale both 

fast moving species are generally taken to be in thermodynamic equilibrium.  

2. Derivation of NLS Equation 

In order to derive the NLS equation, Let S be the state (column) vector  describing 

the system’s state at a given position x and instant t. We shall consider small deviations from 

the equilibrium state  by assuming perturbation solution of the form  

                                                             (5) 

In the above equation,  and  in the parentheses indicate that  and p depends 

implicitly on x and t through a,  and , where a is the complex amplitude,  is the carrier wave 

phase defined as , here k and  are normalized wave vector and frequency, 

respectively, and  is the complex conjugate of amplitude ‘a’. The complex amplitude ‘a’ is 

assumed to be slowly varying function of x and t such that it can be written as 

                                   (6)                                                              

along with the complex conjugate relation. The unknown functions A and B are to be 

determined in such a way to make the solution (5) secularity free. Now substituting the above 

equations into normalized set of equations and collecting the terms with the same power of . 

If we choose the starting solution for  , then the first order solution leads 

to the following dispersion relation or ion acoustic wave in the presence of warm ions in 

unmagnetized e-p-i plasmas, i.e.,  

                          (7) 
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Now continuing the evaluation of the perturbation solution, we will find the second order 

solution . The nonsecularity condition at  demands that the coefficient of   

terms be set equal to zero, which leads to the following condition, i.e.                                                                                        

where  represents the group velocity of the wave. After applying the 

secularity free condition, we obtain the second order solution for  as   follows,  

                              (8) 

where . Here  and its 

complex conjugate are constants with respect to but functions of and . In order to remove 

secularity, these constants should also be set equal to zero. The constant of integration  

is assumed to be real. The complete set of second order secularity free solution  

comes out to be  

                  (9)                                        

The exact form of the coefficients G and H are given in the Ref.[1] and the constants of 

integration  and  are determined from  equation, which are given as 

follows: 

                        (10)                                                               

here  and   are defined  in Ref.[1]. 

On following the same procedure as for the second order solution, we can also find the third 

order solution  from equations of . In order to have a solution  to be secular 

free, we must set the coefficients of  in the third order solution equal to zero, which would 

lead to the following equation: 

                                                         (11) 

where coefficients P and Q are defined as 
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and  and R have been defined in Ref.[1]. 

Let us assume  and   and also by using expressions given in Eq.(6) 

one dimensional nonlinear Schrodinger equation (NLS) for ion acoustic wave with warm ions in 

unmagnetized e-p-i plasma is described as follows: 

                                                                (12) 

Here, dispersion coefficient P and the nonlinear interaction coefficient Q are above, 

respectively. We have introduced the following co-ordinate transformation i.e., ζ=ε(x-vgt), τ=t2= 

εt1= ε2t. Note that for simplicity, we have dropped the linear interaction term ‘Ra’ as it is not of 

much importance and simply causes a phase shift of the nonlinear structure. For cold ions and 

in the absence of positrons, we get the same expressions of coefficients P and Q as described in 

Ref. [2]. However, in the absence of positron case, we will get the same coefficients of P and Q 

as described in Refs. [3] for e-i plasma in the presence of warm ions. 

Now we will analyze the modulational instability formation of envelope structures of the ion 

acoustic waves in the presence of warm ions in unmagnetized e-p-i plasmas as described by NLS 

equation (12). It is well known that the modulational instability depends on the sign of the 

product of the dispersive and nonlinearity coefficient, i.e., PQ. The ion acoustic wave trains in e-

p-i plasma are modulationally stable or unstable depending on whether the product PQ is less 

or greater than zero, respectively. It is clear that dispersive and nonlinear coefficients depends 

on parameters such as positron density and ion temperature, which effects the stability criteria 

of the modulated ion acoustic wave over a wide range of wave number. It can be found easily 

that maximum growth rate of the modulated wave is given by  at wave number , 

where the critical value of the wave number is given by  and  is the amplitude of 

the carrier wave.  The solution of NLS equation is well documented which describes that the 

nonlinear excitations depend upon the sign of the product PQ i.e., the dispersive and nonlinear 

coefficients, respectively. These nonlinear excitations are either bright (self focusing region, PQ 

> 0) or dark (de-focusing region, PQ < 0) envelopes depending on the sign of the product PQ.  
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