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Electric arc model

When an electric potential is applied across a highly resiggaseous medium, an electric
discharge may occur and create a plasma column, which iedcal electric arc. Recently,
Torrilhon and Wright [4] developed an electric arc modeldzhen the equations of magneto-
hydrodynamics (MHD). They studied the non-convective tiofithis model in detail [3, 4].
In this work, we study the full convective arc model. We pearicaxisymmetric electric arc
simulations.

The MHD equations can be written as
Gu+0-F=S (1)

with u = (p,pV,B,Et), F = <pv,pvv+ Piotl — BB, BV — VB, (Eqot + Prot)V + %(B-v)B)
andS— (o,o,és,ios-ém pcvéT).
Here we implicitly introduced the non-convective systeroifi [2, 3, 4] ), given by
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These equations express the conservation of mass, momantlienergy, completed by Fara-
days law. They are written in an appropriate nondimensiooaservative formp denotes the
mass density is the plasma velocity ariq = £+ 30V + 5-B? is the total energy (with inter-
nal energy). Here,pis the thermal pressurgjs the ratio of specific heat amlis the magnetic
field andpiot = p+ 2—}1082 is the total pressure, is the specific heat andldenotes the heat con-
ductivity. T is the temperature arai(T) refers to the electric conductivity. Finally= Il_loD x B

is the current density. The system is closed by an ideal gaetieq of state = ﬁp =cpT.
Essential to the model is the purely temperature depentisitie conductivity which captures
the highly resistive gas as well as the conductive plasmaudd the ionization temperatufe
the electric conductivity jumps with several orders of magge. Following [4], we define
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Finally, we will work in cylindrical coordinates and assum@symmetry. We will assume
thatv = (v, 0,vz) andj = (jr,0, jz), such thaB = (0, B, 0). In this case, the MHD equations (1)
simplify to a five dimensional hyperbolic system with pardeource terms.

In electric arc simulations, one often couples a Maxwellgpto a Navier-Stokes solver.
This splits the system in an electromagnetic part on the and fand a thermal and convective
part on the other hand. Amongst some other problems, thas leaincorrect characteristic
speeds, since the electromagnetic contribution is ignbeed. Therefore, we will alternatively
split the system into ideal magnetohydrodynamics, and #rallic thermal non-convective
system. The first system, ideal MHD, is a non-stiff hyperalystem of conservation laws.
Well-known solvers exist for ideal MHD, and in the simulattopresented, we use an explicit
local Lax-Friedrich scheme with MINMOD limiter. Also thentie stepAt is calculated from
the CFL condition of the hyperbolic system. The parabolio-sonvective part contains the
source terms which drive the system. The temperature depeadof the electric resistivity
introduces stiffness to the system. Another numericallehge is that the ignition happens on
very short time scales at an a priori unknown time. Theseideretions suggest the use of
an implicit solver with adaptive time integrator. Theredpas in [2], we solve the parabolic
part of the system by the RADAU solver [1]. This is a fifth ordmplicit Runge-Kutta scheme
with adaptive time integrator. It is appropriate for bandadobian structures, which typically
appear when writing out a system of ODEs as a PDE system. Wa'pethe necessary number

of RADAU steps to advance the system over a tiihe

Simulation results

Figure 1. The computational domain.

We will perform 3D axisymmetric electric arc simulationsaaylindrical domain with cylin-

drical hollow contacts at both sides of the domain, as shoviigure 1. The dimensions of the
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numerical domain ar,z € [Om,0.5m| x [—0.1m,0.1m]|, and hollow cylindrical contacts are
placed at and € [0.15m,0.20m]| on the lower wall and at € [0.10m,0.15m] at the upper wall.
Initially, a uniform gas p = 34.3'#9) at rest fills the domain at 360 We apply an electric
potential (248V) across the chamber. This potential induces an electrit, fagld Ohmically
heats the gas. It also dictates the initial conditions ferrtiagnetic field. When the potential is
large enough, a discharge occurs and an electric arc is tbivde consider constagt= 1.057
andc, = 103%- Also the thermal conductivity = 8.25- 102% is taken constant. The pa-
rameters for the electric conductivity are takenoas, = 1.65- 1&3\%, Omax = 1.65- 104\%1,

T = 1200 andT; = 300K. The boundary conditions are given by= 300K, andj follows

from the applied electric field.
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Figure 2: Shown are temperature profiles and streamlinesifoent during the electric arc igni-
tion in the non-convective and the convective case, resadctDue to cooling at the boundary
the ignition happens later in the convective case.

Figure 2 shows a non-convective and a convective electecigganition simulation at when
lare = 200KA. For the non-convective case this happerts-a.3010 s, The convection allows
the gas to cool down faster, since warmer gas is convectedimeewall. For the convective case
the ignition happens much later and at 4.552 10-3s a total currentac = 200kA is reached.
Soon after, at = 4.553 10 3s the total currentg,c = SMA. This perfectly illustrates the range
of time scales involved, and the need for an addaptive tiregrator.

Once acritical current through the arc is achieved, we Keaigtirrent constant. This changes
the boundary conditions fd: on the inside of the contact, we $&t= 0, and at the outside of

the contact we sd(r,+2) = éﬁ‘# andB(R,z) = 2";{'3 We will switch to this current-driven situ-

ation for two different currentdy.c 1 = 200kA andl4c 2= SMA. The situation in these cases is
essentially different. In the first case, the plasma is tladlsndominated and the Lorentz force
is negligible compared to the thermal pressure, while irs#@nd case the plasma is magnet-
ically dominated, as can be seen in figure 3. In the thermaligidated case, the arc is pushed
outwards, while in the magnetically dominated case, thésgyashed inwards, as can be seenin
figure 4. 1t should be noted that the traditional splittingleé system into Maxwell’s equations
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Figure 3: The pressure profile Zt= 0 during ignition at = 4.552 10-3sandt = 4.553 10°3s.
One sees that the ignition happens on small time scalesgAtdurrents, the traditional splitting
in the Navier-Stokes equations and the Maxwell equatiotideeid to incorrect characteristic

speeds.

on the one hand, and Navier-Stokes equations on the othdr tdhlead to incorrect char-
acteristic speeds. It should be noted that for more reaksfuations of state this magnetically
dominated behaviour appears at lower currents. These aiioig are a work in progress, and

will be presented in a future publication.
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Figure 4: A thermally and a magnetically dominated ele@ricat constant total current. In the

magnetically dominated case, the Lorentz force pushedéktie arc inwards.
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