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The nonlinear structures, which represent the plasma states far from thermodynamic 

equilibrium, are either spontaneously created in laboratory and space plasmas or externally 

launched in laboratory plasmas under controlled conditions. The presence of charged dust grains 

introduces new features to the nonlinear structures, which are otherwise absent in the usual e-i 

plasma. In the past few decades, the propagation of nonlinear dust acoustic wave, in dusty plasmas 

with an unbounded planar geometry has been extensively studied theoretically [1]. Although, the 

one dimensional geometry may not be a realistic situation in laboratory devices and in space, but 

many of those studies are limited to one dimensional geometry [2-5]. The solitary waves in 

unmagnetized dusty plasmas without the dissipation and geometry distortion effects can be 

described by the Korteweg-de Vries (KdV) equation or Kadomtsev- Petviashvili (KP) equation [6-

13]. Since most of the dusty plasmas in laboratory and space environments are confined in an 

external magnetic field, it is of practical interest to examine the properties of dusty plasma modes 

in a magnetoplasma. In dusty plasmas, if the dissipation is weak at the characteristic dynamical 

time scale of the system the balance between nonlinear and dispersion effects can result in the 

formation of symmetrical solitary waves. Also shock waves will be propagated in this system if 

dissipation effect is strong. Thus solitary waves and shock waves (oscillatory and monotonic 

types) can be produced in dusty plasmas. 

 With assumption, the dust grain radius <<a  the electron gyroradius eρ , the charging 

characteristics are not significantly influenced by the existence of an external magnetic field, since 

for ea ρ<< , the curvature effect of the trajectory of an electron (ion) impinging on a dust grain of 

radius a  can be neglected. Also in the low-frequency regime, electrons and ions are assumed in a 

Boltzmann distribution due to the fact that the mode frequency is much lower than the electron 

and ion frequencies. In this letter, we have extended Ref. [14] by using the axial magnetic field 

and the dust temperature. The nonlinear dust acoustic waves in dusty plasmas with the combined 

effects of the transverse perturbation, and axial magnetic field are studied in the cylindrical 

coordinates. Using the perturbation method, a cylindrical nonlinear equation that describes the 

dust magneto acoustic wave is deduced for the first time. The inhomogeneous cylindrical 

Kadomtsev- Petviashvili (ICKP) equation is found and solved numerically.  

39th EPS Conference & 16th Int. Congress on Plasma Physics P1.145



  

Let us consider a fully ionized, collisionless dusty plasma consisting of a mixture of 

electron/ion (with Boltzmann distribution function), negatively charged dust particles in the 

presence of an external static magnetic field zB ˆ0B= . To study the magnetized DA solitary waves 

in nonplanar cylindrical geometry, we assume that the solitary wave propagates in a cylindrical 

geometry filled with hot magnetized dusty plasma. So the hydrodynamic equation for dust 

particles and Poisson's equation, can be written in cylindrical geometry as 
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where ( θ,r ) are radial and angle coordinates, ( dd vu , ) are the dust fluid velocity in r and θ  

directions, and φ,dn  represent the dust density number and the electrostatic potential, 

respectively. The variables ),(,,, ddd vunrt , φ , are normalized to the dust plasma frequency 

ddpd meZn /4 22
0πω = , Debye length Dλ , unperturbed equilibrium dust density 0dn , effective 

dust acoustic velocity diBd mTZkC /=  and eTk iB / , respectively. Here we have denoted 

00 / ei nn=µ , )1/(/ 00 −== µµµ dii Znn , )1/(1/ 00 −== µµ dee Znn , 0000 =−+ ied nnZn , 

and eii TT /=σ . The cyclotron frequency of dust particles cmqB dc /0=ω  is normalized by pdω .  
In order to investigate dust acoustic wave in magnetized plasmas, we employ the standard 

reductive perturbation technique to obtain the nonlinear differential equation.  The independent 

variables can be stretched as )( 0
2/1 tVr −= εξ , θεη 2/1−=  and t2/3ετ = , where ε  is a small 

parameter and 0V  is the wave velocity. In our case, we assume weak magnetic field, so the 

normalized cyclotron frequency is a finite quantity of the order of the small parameterε . Also, 

dependent variables are expanded as  
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Substituting Eqs. (5)-(8) into Eqs. (1)-(4) and collecting the terms in different powers of ε , to 

lowest order in ε , we obtain  
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In the next higher order of ε , we obtain  
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Now, using Eqs. (9)-(14) and eliminating variables 1122 ,,, uvun , one can obtain the 

inhomogeneous cylindrical Kadomtsev- Petviashvili (ICKP) equation,  
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where  A= 22
000

3
0

2 )/(2/2/3)1(2/)( idid ZTTVZTVTVV −+−−− µσµ  and 2/3
0VB = . If the wave 

propagate without magnetic field and the transverse perturbation, the right hand side and the last 

term in the left hand side disappear, so the ICKP equation reduce to the ordinary cylindrical KdV 

equation, which it has an exact solitary wave solution.  The terms ξφτ ∂∂ /)2/1( 1  and 

2
1

22
0 /)2/1( ηφτ ∂∂V , can be canceled if we define new variable 2/2

0 τηξχ V−= , and 

),(11 τχφφ = . Then the ICKP equation (15) is reduced to the inhomogeneous KdV equation, 
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Without magnetic field (D=0), it is well known that the KdV equation has a solitary wave solution 
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where 0u  is a constant represent wave velocity. It is clear that the amplitude and wave velocity of 

solitary wave (17) are uniquely determined by the parameters of the system and only depend on 

the initial conditions.  

For solving the inhomogeneous nonlinear equation (16), we have used the Adomian 

decomposition method (numerical solution). The result shows for the weak magnetic field 

( εωω ~/ pdc ), the shape of solitary wave (width and amplitude) and the symmetry of the wave-

packet change. Also, the results show the cylindrical wave will slightly deform as time goes on.  
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