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The dipole moment in homogeneous MHD turbulence is (xo)  (xxo)j(xxo)d
3x, where 

j(x) is electric current and xo is a coordinate origin. The mean over all xo in a (2)3 periodic 
box is [] = (xo)d

3xo = 0, while the same averaging for 2222
zyx    produces 

 

           

)gf,e,1(.)ˆ()ˆ()ˆ(,)ˆ()ˆ()ˆ(,)ˆ()ˆ()ˆ(

)cb,a,1(,)ˆ()ˆ(
2

1
,)ˆ()ˆ(

2

1
,)ˆ()ˆ(

2

1

222222

222

zzzyyyxxx

yxxzzy

R
y

R
xM

R
x

R
zM

R
z

R
yM

MMzMMyMMx

bbEbbEbbE

EEEEEE



 

 

Above, zyxk ˆorˆ,ˆ , i.e., k = 1, and )ˆ(),ˆ(),ˆ( zyx MMM EEE are modal magnetic energies.  

In this homogeneous case, the   ,,,,2 zyxii  in (1a-c) are expressed in terms of the magnetic 

energies for only the k = 1 modes because these are so large compared to k  1 modes [1]. An 
example of the time evolution of these modal energies is given for the 323 Fourier method 

ideal MHD simulation R32-1 in Fig. 1. Run R32-1 ran on a single processor CPU for 4106 

time-steps (with t = 0.001), had a constant energy of E = 1, a constant magnetic helicty of 

HM = 0.524, and a rotation rate of o = 1.0 about the z-axis. (Runs typically have millions of 
time-steps in order that the associated dynamical system reach equilibrium and time-averages 
are meaningful when compared to ensemble averages drawn from statistical theory [1].) In 

Fig. 1a, over the last half of the run, the time-averages, ,, CM HE  plus or minus the standard 

deviations, are ME  0.7619  0.0014 and CH  (2.02  1.58)10. 

 

Figure 1. Data from Run R32-1, where E = 1, HM = 0.5239, o = 1.0 ẑ . 
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The theoretical prediction is EM = 0.7622, matching numerical data extremely well. Initially, 

it was assumed [2] that CH  0 for rotating MHD turbulence, but we found in Run R32-1 and 

several other runs with 0.1  HM  0.7 that we typically have CH  0.002, which also occurs 

in 643 simulations; the standard deviation is also about 0.002 in all cases. In Fig. 1b, )ˆ(zME is 

around twice the size of )ˆ(or )ˆ( yx MM EE at equilibrium, and the energy in the k = 1 modes of 

the magnetic field is about 28% of the total energy E. To see what happened in the presence 
of dissipation, we began with the same initial conditions as ideal run R32-1 and ran a 
simulation with o = o = 0.001, which we named R32-2, for 5105 t’s, again with t = 
0.001. Thus, while R32-1 ran from simulation time t = 0 to 4000, R32-2 ran from t = 0 to 500, 
at which point dissipation had moved the system out of its turbulent stage and into its 
essentially purely decaying stage, with E falling from E = 1 at t = 0, to E = 0.1875 at t = 500. 

Although the total energy E(t) decayed in R32-2, the quantities )(/),ˆ(),(/),ˆ( tEtEtEtE MM yx  

and )(/),ˆ( tEtEM z  behaved similarly to what appears in Fig. 1b. However, |HM(t)|  EM(t) 

and EM(t)/E(t)  1 as t increased in R32-2, so that EM and HM decayed more slowly than E(t), 
i.e., ‘selective decay’ [3] occurred. Thus, in R32-2, and other dissipative, homogeneous MHD 
turbulence simulations, we observe that energy tends to become essentially all magnetic and 
to reside in the k = 1 modes, i.e., energy concentrates at the longest wavelengths and HM/E 
tends to maximize. In R32-2, EK(t) falls to less than 1% of EM(t) at about t = 160, while in the 
ideal R32-1, at equilibrium, EM(t) = 0.7622 and EK(t) = 0.2378 at t = 4000. In contrast, in 
simulations without rotation, EK(t)/EM(t) ~ 2/3 for both ideal and decaying runs. Runs may be 

compared by plotting Re ),(
~

tbn k vs Im ),(
~

tbn k , n = x, y, z, as is shown in Fig. 2. It is clear that 

ideal and decaying ),(
~

tkb   with k = 1 are very similar until late in the run, when dissipation 

causes the R32-2 components to enter a linear decay stage. Fig. 2 also demonstrates ‘broken 

ergodicity’ [1,2], since ensemble predictions are that all 0),(
~ tkb .  

 

Figure 2. Phase plots of )(
~

kb with k = 1 for (a) ideal run R32-1 and (b) dissipative run R32-2. 
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Hybrid Statistics 

In order to explain some apparent differences between the statistical theory of 2-D ideal MHD 
turbulence in the presence of a mean magnetic field Bo, the concept of hybrid statistics was 
introduced [4]. Here, we apply hybrid statistics to the case of 3-D MHD turbulence in a frame 

of reference rotating with angular velocity o = o .ẑ  The periodic box, Fourier method 

results shown in Figure 1b suggest that the statistical theory of ideal, rotating 3-D MHD 
turbulence [1,2] must be modified so that ensemble predictions for modes with k = (0, 0, kz), 
which are symmetric upon rotation about the z-axis, are qualitatively different from those with 
k = (kx, ky, kz), where at least one of either kx or ky is nonzero, so that the associated modes are 
not symmetric upon rotation about the z-axis. In order to incorporate anisotropy in the 
statistical theory, we must make use of the available parameters, i.e., HM and HC in the ideal 
case, and HM/E and HC/E in the decaying case, treated as a quasiequilibrium. As Fig. 2 shows, 
this is not an unreasonable assumption.  

Here, we will consider directly the development of hybrid statistics for ideal MHD turbulence 
in a rotating spherical shell, which is modeled using spherical Bessel-spherical harmonic 
expansions [5]. In the spherical shell model system, the m = 0 modes of the expansions are 

rotationally symmetric about the z-axis, while the m  0 modes are not. The three l = n = 1, 

modes with m = 0, 1 (i.e., dipole components) are the most energetic and the most affected 
by hybrid statistics, i.e., exhibit the strongest anisotropy. The principle of hybrid statistics is 
applied as follows to rotating, ideal MHD turbulence in a spherical shell. The quantities 

 ˆand,ˆ,â  that appear in modal ensemble predictions have a general form that depends on 

the two parameters CĤ  and MĤ , along with the undetermined variable ̂ , which is found by 

minimizing an ‘entropy functional’ [5] with respect to ̂ , a minimum that occurs at ô
ˆ   . 

Anisotropy is introduced by assigning all m = 0 modes an effective value CĤ  0.002 for ideal 

MHD, and an effective value CĤ  0.02 for decaying MHD; these approximate values appear 

to emerge consistently from 323 and 643 periodic box simulations. In turn, all m  0 modes are 

nominally assigned an effective value CĤ = 0. Two sets of  ˆand,ˆ,â , one for all m = 0 

modes ( 000 ˆand,ˆ,ˆ a ) and the other for all m  0 modes ( mmma  ˆand,ˆ,ˆ ) are needed: 
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Here, EHH /ˆ
CC  , EHH /ˆ

MM  , where E, HC, and HM, represent specific values of energy, 

cross and magnetic helicity, and 2M is the number of independent coefficients a simulation. 

The ‘undetermined value’ of the normalized magnetic energy is EE /ˆ
M  and the expected 

value ô
ˆ    is found by a minimization procedure and fixes the mmma  ˆand,ˆ,ˆ in (2a-e), 

(2a,b,c) 

 (2c,d,e) 
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allowing for ensemble predictions of the modal energies |blmn|
2. The magnetic energies for 

those modes with l = n = 1 are expected to be ~M times greater than for any other modes [5], 

i.e., the magnetic energy spectrum peaks sharply at l =1. The ratio B  |b101|
2|b111|

2 
between the m = 0 and 1 modal magnetic energies for l = n = 1 can now also be predicted.  

Using results in [5], we can find the ratio B, and from it, the dipole angle D  arctan(2/B); 

we plot this for several values of MĤ  over the range 5.0ˆ10 5 
CH   in Fig. 3. 

 

Figure 3. Expectation values for dipole angle D in a model ideal MHD turbulent geodynamo. 

The results shown in Fig. 3 come from a theoretical model of ideal (E = 1) MHD turbulence 
in a rotating spherical shell using an expansion with 1  l  100, l  m  l  and 1  n  100. 

The vertical blue dotted line indicates HC  0.002 and the maximum value possible for HM is 

found from the relations k11|HM |  EM  E, with k11 = 1.8638, if an Earth-like ratio of outer 
and inner radii for the liquid core are used. Since E = 1, maximum |HM | = 0.53654; however, 
in the case of periodic box MHD turbulence, the lowest spherical wavenumber k11 is replaced 
by the lowest Fourier wavenumber k = 1, in which case we have maximum |HM | = 1. Please 
remember that the results shown in Fig. 3 are statistical averages for ideal systems in 
equilibrium and decaying systems in quasiequilibrium at the larger scales. Understanding 
dynamical phenomena, such as excursions and polarity reversals in a geodynamo, requires 
numerical simulations and, if possible, a dynamical theory in addition to a statistical one.  
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