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The dipole moment in homogeneous MHD turbulence is p(Xo) = J(x—Xo)xj(x—Xo)d’x, where
j(x) is electric current and x, is a coordinate origin. The mean over all X, in a (27)° periodic
box is [u] = [n(xe)d*x, = 0, while the same averaging for z* = g} + u? + 1’ produces
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Above, k=X,yorz,ie,k=1and E, (X), E, (¥), E, (2) are modal magnetic energies.

In this homogeneous case, the [yf ] i =X,Y,2,in (1la-c) are expressed in terms of the magnetic

energies for only the k = 1 modes because these are so large compared to k # 1 modes [1]. An
example of the time evolution of these modal energies is given for the 32° Fourier method
ideal MHD simulation R32-1 in Fig. 1. Run R32-1 ran on a single processor CPU for 4x10°
time-steps (with At = 0.001), had a constant energy of E = 1, a constant magnetic helicty of
Hm = 0.524, and a rotation rate of Q, = 1.0 about the z-axis. (Runs typically have millions of
time-steps in order that the associated dynamical system reach equilibrium and time-averages
are meaningful when compared to ensemble averages drawn from statistical theory [1].) In
Fig. 1a, over the last half of the run, the time-averages, E,,, H., plus or minus the standard

deviations, are E,, ~0.7619 +0.0014 and H.~ (2.02 + 1.58)x10™".
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Figure 1. Data from Run R32-1, where E =1, Hy =0.5239, Q,=1.0Z.
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The theoretical prediction is (Ey) = 0.7622, matching numerical data extremely well. Initially,
it was assumed [2] that H.. = 0 for rotating MHD turbulence, but we found in Run R32-1 and

several other runs with 0.1 < Hy < 0.7 that we typically have H.~ 0.002, which also occurs
in 64° simulations; the standard deviation is also about 0.002 in all cases. In Fig. 1b, E, (2)is

around twice the size of E,, (X) or E,, (y) at equilibrium, and the energy in the k = 1 modes of

the magnetic field is about 28% of the total energy E. To see what happened in the presence
of dissipation, we began with the same initial conditions as ideal run R32-1 and ran a
simulation with 1, = 7, = 0.001, which we named R32-2, for 5x10° At’s, again with At =
0.001. Thus, while R32-1 ran from simulation time t = 0 to 4000, R32-2 ran from t = 0 to 500,
at which point dissipation had moved the system out of its turbulent stage and into its
essentially purely decaying stage, with E falling fromE=1att=0, to E = 0.1875 at t = 500.

Although the total energy E(t) decayed in R32-2, the quantities E,,(X,t)/E(t), E,,(¥,t) /E(t)
and E,,(z,t)/E(t) behaved similarly to what appears in Fig. 1b. However, |[Hu(t)] — Em(t)

and Eu(t)/E(t) > 1 as t increased in R32-2, so that Ey and Hy decayed more slowly than E(t),
i.e., ‘selective decay’ [3] occurred. Thus, in R32-2, and other dissipative, homogeneous MHD
turbulence simulations, we observe that energy tends to become essentially all magnetic and
to reside in the k = 1 modes, i.e., energy concentrates at the longest wavelengths and Hw/E
tends to maximize. In R32-2, Ex(t) falls to less than 1% of Ey(t) at about t = 160, while in the
ideal R32-1, at equilibrium, En(t) = 0.7622 and Ek(t) = 0.2378 at t = 4000. In contrast, in
simulations without rotation, Ex(t)/Em(t) ~ 2/3 for both ideal and decaying runs. Runs may be

compared by plotting Re En(k,t) vs Im En(k,t), n=x,Y, z as is shown in Fig. 2. It is clear that
ideal and decaying 5(k,t) with k = 1 are very similar until late in the run, when dissipation
causes the R32-2 components to enter a linear decay stage. Fig. 2 also demonstrates ‘broken
ergodicity’ [1,2], since ensemble predictions are that all <5(k,t)> =0.
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Figure 2. Phase plots of 5(k) with k = 1 for (a) ideal run R32-1 and (b) dissipative run R32-2.
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Hybrid Statistics

In order to explain some apparent differences between the statistical theory of 2-D ideal MHD
turbulence in the presence of a mean magnetic field B,, the concept of hybrid statistics was
introduced [4]. Here, we apply hybrid statistics to the case of 3-D MHD turbulence in a frame
of reference rotating with angular velocity Q, = Q,Z. The periodic box, Fourier method
results shown in Figure 1b suggest that the statistical theory of ideal, rotating 3-D MHD
turbulence [1,2] must be modified so that ensemble predictions for modes with k = (0, 0, k,),
which are symmetric upon rotation about the z-axis, are qualitatively different from those with
k = (kx, ky, kz), where at least one of either ky or ky is nonzero, so that the associated modes are
not symmetric upon rotation about the z-axis. In order to incorporate anisotropy in the
statistical theory, we must make use of the available parameters, i.e., Huy and Hc in the ideal
case, and Hw/E and Hc/E in the decaying case, treated as a quasiequilibrium. As Fig. 2 shows,
this is not an unreasonable assumption.

Here, we will consider directly the development of hybrid statistics for ideal MHD turbulence
in a rotating spherical shell, which is modeled using spherical Bessel-spherical harmonic
expansions [5]. In the spherical shell model system, the m = 0 modes of the expansions are
rotationally symmetric about the z-axis, while the m = 0 modes are not. The three | = n =1,
modes with m = 0, +1 (i.e., dipole components) are the most energetic and the most affected
by hybrid statistics, i.e., exhibit the strongest anisotropy. The principle of hybrid statistics is
applied as follows to rotating, ideal MHD turbulence in a spherical shell. The quantities

a, ﬁ and y that appear in modal ensemble predictions have a general form that depends on
the two parameters #. and 7, , along with the undetermined variable ¢, which is found by
minimizing an ‘entropy functional’ [5] with respect to gz? a minimum that occurs at ¢;= ¢?0.
Anisotropy is introduced by assigning all m = 0 modes an effective value '74‘70 ~ 0.002 for ideal
MHD, and an effective value ;’%C ~ 0.02 for decaying MHD; these approximate values appear

to emerge consistently from 323 and 64° periodic box simulations. In turn, all m = 0 modes are
nominally assigned an effective value 'ﬁ/cz 0. Two sets of 4, ,3 and 7, one for all m = 0
modes (4,, ﬁo, and 7,) and the other for all m = 0 modes (4,,, ,Bm, and y,,) are needed:
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Here, éfc =%.1E, 'ﬁfM =%, /€, where £, #c, and #y, represent specific values of energy,
cross and magnetic helicity, and 2M is the number of independent coefficients a simulation.
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The ‘undetermined value’ of the normalized magnetic energy is qu Eul€ and the expected

value ¢3:¢30 is found by a minimization procedure and fixes the &, [i’m, and 7, in (2a-e),
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allowing for ensemble predictions of the modal energies (|bimn|?). The magnetic energies for
those modes with | = n = 1 are expected to be ~M times greater than for any other modes [5],
i.e., the magnetic energy spectrum peaks sharply at | =1. The ratio B = (|byo1/*¥/(|b111[*)
between the m = 0 and 1 modal magnetic energies for I =n =1 can now also be predicted.

Using results in [5], we can find the ratio B, and from it, the dipole angle 6p = arctan(2/B");
we plot this for several values of ‘27,\,, over the range 107° < 'ﬁfc <0.5 inFig. 3.
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Figure 3. Expectation values for dipole angle 6p in a model ideal MHD turbulent geodynamo.

The results shown in Fig. 3 come from a theoretical model of ideal (E = 1) MHD turbulence
in a rotating spherical shell using an expansion with 1 <1< 100, -l <m <1 and 1 <n <100.
The vertical blue dotted line indicates Hc ~ 0.002 and the maximum value possible for Hy is
found from the relations kii1|Hu| < Em < E, with ki3 = 1.8638, if an Earth-like ratio of outer
and inner radii for the liquid core are used. Since E = 1, maximum |Hy | = 0.53654; however,
in the case of periodic box MHD turbulence, the lowest spherical wavenumber Kk, is replaced
by the lowest Fourier wavenumber k = 1, in which case we have maximum |Hy | = 1. Please
remember that the results shown in Fig. 3 are statistical averages for ideal systems in
equilibrium and decaying systems in quasiequilibrium at the larger scales. Understanding
dynamical phenomena, such as excursions and polarity reversals in a geodynamo, requires
numerical simulations and, if possible, a dynamical theory in addition to a statistical one.
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