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The expression for the Debye shielding in plasmgsiols is usually derived under the
assumptions that the plasma particles are wealdpled, so their kinetic energy is much
larger than the potential energy between them, thad the velocity distributions of the

plasma species are Maxwellian. The first assumptadso establishes that the plasma
parameter N, the number of particles within a sphere with d{geradius should be greater
thanAp, and determines the difference between weaklyh(ssaef. [8]) and strongly coupled

plasmas. Under such assumptions, Poisson’s equaiobe linearised, and a simple analytic
expression obtained for the electrostatic potenkawever, textbooks (such as refs. [1-5])
rarely discuss the accuracy of this approximationthis work we compare the linearised
solution with the exact one, obtained numericallyd show that the linearisation, which
underestimates the exact solution, is reasonaliy goen for N ~ 40. We give quantitative

criteria to set the limit of the approximation whitsie number of particles is very small, or the

distance to the test charge is too short.

In this work we compare the linearised solutioriPofsson’s equation
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with the exact one, obtained numerically. We mdie tsual assumptions: (i) The kinetic
energy of the particles is much greater than thential energy between them, which means
that the plasma is weakly coupled, and allows theafization of the problem, (ii) Each
particle species is in thermodynamic equilibriung #eir velocity distributions are
Maxwellian, (iii) The positive ions are protons liinfinite inertia, so they form a uniform

background of density. Since the electron density would then be givennky) = n
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exge@(r)/KT), thenpo(r)= ndexp-ed(r)/kT)- expe®(r)/kT)]. Also we are going to consider
another way, writing' (r)= ngJ1- expe®(r)/kT)] in order to compare with ref. [8].

Let us now define the Debye lenglh = (&kT/né)?, and normalise the distanceand the
potential @(r) in terms of it (equations 2 and 3). We have d&firfor conveniencé\p
=477p°n, which is three times the number of particles imita sphere with alp radius.

Therefore, we can write the normalised distance aalkctrostatic potential
p=rli, , (2)

Wr)=4m A, ®le . (3)

Equation (1) can then be rewritten as equatioriai@p. and (5) forp’c.
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Comparing the argument of the exponential in equati(4) and (5), we can see that the
weakly coupled assumptiae®(r)/ KT << 1, which is a consequence of the poterdiargy
between the particles being much smaller than tkisietic energy, is equivalent to the
assumption thaNp >> 1. Under such conditions, we can keep the fingt terms in the
expansion of the exponential, and linearise equat{d) and (5) to yield the simple solution
(6) for o, and (7) foro ..
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The main purpose is to compare the solution to tempu= (4) and (5), %., obtained

numerically, with the linearised equations (6) a, %, The numerical solutions are
obtained by means of a fourth-order Runge-Kuttdimey which is started at the tail of the
solution, and integrated backwards. The initialueslpy, the distanceq is such that the

linearised and numerical solutions differtjmvhere t is the tolerance ¢4- %4|/ ¥.)x100.

Table 1. Initial value 0, and 0, for tolerances of = 1%, 5%, and 10 %. For different values\gf
10, is the initial value for the Runge-Kutta calcidat g, are the values at which the tolerances are regched
o
Step t=1% t=5% t=10%
No | Oy | P | P, P, o, P, o, P, o
1 11 | 10" | 10® 1.775 0.430 0.734 0.206 0.401 0.149
10 5 | 10" [ 10% | 3.405x10" | 1.098x10" | 8.433x1C0° | 7.346x1C0° | 7.222x1C° | 6.814x10°
40 5 | 10" 10% | 1.836x1C0° | 1.585x10° | 1.405x1C° | 1.380x10° | 1.341x1C° | 1.326x10°
1x10| 5 | 10°]10°| 5.520x10" | 5.369x10° | 4.867x10° | 4.838x10° | 4.711x10" | 4.692x10°
1x10| 2 [ 10°]10°| 4.037x10 | 4.026x10 | 3.763x1F | 3.760x1F | 3.689x1C | 3.688x1C0°
1x10'| 2 | 10°[10™°| 3.277x1¢ | 3.274x1¢ | 3.110x1¢F | 3.110x1¢ | 3.068x1C | 3.068x10
1x10 | 0.1 | 10™°[10™| 2.779x10 | 2.777x10 | 2.665x10 | 2.665x10 | 2.638x10° | 2.639x10
1x10 | 0.01 | 10"[10™| 2.421x1F | 2.419x1F | 2.339x1F | 2.339x1C | 2.320x1C | 2.321x10°
1 x10 | 0.001| 10%[ 10| 2.150x10 | 2.148x10 | 2.088x10 | 2.088x10° | 2.075x10 | 2.075x10

Table 1 shows, for several values M, that the initial valuegy used for the numerical
integration, and the valugg for which tolerances of 1, 5 and 10% betweenwwegolutions
fail. The same results are plotted in logarithnaals in figure 1. For large values opNhe
distance at which the approximation breaks is rbutite same regardless of the tolerance. In
the plots in Fig. 1, they overlap down My = 40. AsNp is further reduced, the distance at

which the approximation breaks increases, andgefdor smaller tolerances.

Thus, the linear approximation is very good when=\40 to 10, and it is possible to fit the
results to a curve (solid lines in Fig. 1), whictelgs the empirical lawspy(Np*%%*%3 =
0.0572822 fop,, andpy(Np%**3 = 0.0573324 fop . This should be compared to the curve

logig0 = -logioNp, which stands for the limiNppo = 1. Therefore, our result gives a
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guantitative meaning to the statemélgjo << 1. We should note that this result differs with
that found in Ref. [8]Npoy = 0.01. Our work goes further than that of Ref, [B that we
study the cases of smaller values ¢f Besides, only the case in which the tolerand®%
was reported. The numerical (exact) solution ferelectrostatic potentidH o) was obtained,
from equation (5), and it was compared to the apprate solution (10), found for the
linearised approximation. The latter underestimattes exact solution, but is a good
approximation for values of fNas small as 40. Even forpN= 5, the approximation is still

good, down to = 0.054p if one requires only a 5% tolerance.

O bifference of 1% with ..

Figure 1. (left) t = 1%, (centre} = 5%, (right)t = 10%.
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