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The expression for the Debye shielding in plasma physics is usually derived under the 

assumptions that the plasma particles are weakly coupled, so their kinetic energy is much 

larger than the potential energy between them, and that the velocity distributions of the 

plasma species are Maxwellian. The first assumption also establishes that the plasma 

parameter ND, the number of particles within a sphere with a Debye radius should be greater 

than λD, and determines the difference between weakly (such as ref. [8]) and strongly coupled 

plasmas. Under such assumptions, Poisson’s equation can be linearised, and a simple analytic 

expression obtained for the electrostatic potential. However, textbooks (such as refs. [1-5]) 

rarely discuss the accuracy of this approximation. In this work we compare the linearised 

solution with the exact one, obtained numerically, and show that the linearisation, which 

underestimates the exact solution, is reasonably good even for ND ~ 40. We give quantitative 

criteria to set the limit of the approximation when the number of particles is very small, or the 

distance to the test charge is too short. 

In this work we compare the linearised solution of Poisson’s equation  
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with the exact one, obtained numerically. We make the usual assumptions: (i) The kinetic 

energy of the particles is much greater than the potential energy between them, which means 

that the plasma is weakly coupled, and allows the linearization of the problem, (ii) Each 

particle species is in thermodynamic equilibrium, so their velocity distributions are 

Maxwellian, (iii) The positive ions are protons with infinite inertia, so they form a uniform 

background of density n. Since the electron density would then be given by ne(r) = n 
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exp(eΦ(r)/kT), then ρc(r)= ne[exp(-eΦ(r)/kT)- exp(eΦ(r)/kT)]. Also we are going to consider 

another way, writing ρ’ c(r)= ne[1- exp(eΦ(r)/kT)] in order to compare with ref. [8]. 

Let us now define the Debye length λD = (ε0kT/ne2)1/2, and normalise the distance r and the 

potential Φ(r) in terms of it (equations 2 and 3). We have defined for convenience ND 

=4πλD
3n, which is three times the number of particles within a sphere with a λD radius. 

Therefore, we can write the normalised distance and electrostatic potential 
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( ) er Do /4 Φ=Ψ λπε        .                                                  (3) 

Equation (1) can then be rewritten as equation (4) for ρc and (5) for ρ’ c. 

 

d2 ρΨ( ρ )( )
dρ2

= −ρN
D

exp −
Ψ( ρ )

N
D









 − exp

Ψ( ρ )

N
D






















           ,                     (4) 

 

d2 ρΨ( ρ )( )
dρ2

= −ρN
D

1− exp
Ψ( ρ )

N
D






















                      .                            (5) 

Comparing the argument of the exponential in equations (4) and (5), we can see that the 

weakly coupled assumption eΦ(r)/ kT << 1, which is a consequence of the potential energy 

between the particles being much smaller than their kinetic energy, is equivalent to the 

assumption that ND >> 1. Under such conditions, we can keep the first two terms in the 

expansion of the exponential, and linearise equations (4) and (5) to yield the simple solution 

(6) for ρc, and (7) for ρ’ c. 
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The main purpose is to compare the solution to equations (4) and (5), Ψe, obtained 

numerically, with the linearised equations (6) and (7), Ψa. The numerical solutions are 

obtained by means of a fourth-order Runge-Kutta routine, which is started at the tail of the 

solution, and integrated backwards. The initial values ρ0, the distance ρd is such that the 

linearised and numerical solutions differ in t, where t is the tolerance ( Ψa-Ψe / Ψe )×100. 

Table 1. Initial value oρ  and dρ for tolerances of t = 1%, 5%, and 10 %. For  different values of ND. 

ρo  is the initial value for the Runge-Kutta calculation. ρd are the values at which the tolerances are reached. 

   dρ  

  Step t = 1% t = 5% t = 10% 

ND oρ   ρc
  ρ'

c
  ρc

  ρ'
c
  ρc

  ρ'
c
  ρc

  ρ'
c
 

1 11 10-7 10-8 1.775 0.430 0.734 0.206 0.401 0.149 

10 5 10-7 10-8 3.405×10-1 1.098×10-1 8.433×10-3 7.346×10-3 7.222×10-3 6.814×10-3 

40 5 10-7 10-8 1.836×10-3 1.585×10-3 1.405×10-3 1.380×10-3 1.341×10-3 1.326×10-3 

1 ×102 5 10-8 10-9 5.520×10-4 5.369×10-4 4.867×10-4 4.838×10-4 4.711×10-4 4.692×10-4 

1 ×103 2 10-8 10-9 4.037×10-5 4.026×10-5 3.763×10-5 3.760×10-5 3.689×10-5 3.688×10-5 

1 ×104 2 10-9 10-10 3.277×10-6 3.274×10-6 3.110×10-6 3.110×10-6 3.068×10-6 3.068×10-6 

1 ×105 0.1 10-10 10-11 2.779×10-7 2.777×10-7 2.665×10-7 2.665×10-7 2.638×10-7 2.639×10-7 

1 ×106 0.01 10-11 10-12 2.421×10-8 2.419×10-8 2.339×10-8 2.339×10-8 2.320×10-8 2.321×10-8 

1 ×107 0.001 10-12 10-13 2.150×10-9 2.148×10-9 2.088×10-9 2.088×10-9 2.075×10-9 2.075×10-9 

Table 1 shows, for several values of ND, that the initial values ρ0 used for the numerical 

integration, and the values ρd for which tolerances of 1, 5 and 10% between the two solutions 

fail. The same results are plotted in logarithmic scale in figure 1. For large values of ND, the 

distance at which the approximation breaks is roughly the same regardless of the tolerance. In 

the plots in Fig. 1, they overlap down to ND = 40. As ND is further reduced, the distance at 

which the approximation breaks increases, and is larger for smaller tolerances. 

Thus, the linear approximation is very good when ND = 40 to 107, and it is possible to fit the 

results to a curve (solid lines in Fig. 1), which yields the empirical laws: ρd(ND
1.06482) = 

0.0572822 for ρc, and ρd(ND
1.06489) = 0.0573324 for ρ’ c. This should be compared to the curve 

log10ρ = -log10ND, which stands for the limit NDρ = 1. Therefore, our result gives a 
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quantitative meaning to the statement NDρ << 1. We should note that this result differs with 

that found in Ref. [8]: NDρd = 0.01. Our work goes further than that of Ref. [8], in that we 

study the cases of smaller values of ND. Besides, only the case in which the tolerance is 10% 

was reported. The numerical (exact) solution for the electrostatic potential Ψ(ρ) was obtained, 

from equation (5), and it was compared to the approximate solution (10), found for the 

linearised approximation. The latter underestimates the exact solution, but is a good 

approximation for values of ND as small as 40. Even for ND = 5, the approximation is still 

good, down to r = 0.05λD if one requires only a 5% tolerance.  

 

Figure 1. (left) t = 1%, (centre) t = 5%, (right) t = 10%. 
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