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I. Introduction Alfvénic waves driven unstable by energetic particles in magnetic con-
finement devices often evolve into a strongly nonlinear regime, characterized by bursting
mode amplitudes and significant frequency sweeping [1, 2]. Such events are intimately
associated with the formation of long-living structures in the fast particle distribution
function, so called holes and clumps, comprised of resonant particles moving coherently
in phase space. As these entities evolve due to dissipation, the frequencies of the observed
signals may diverge from the initial resonance.

The occurence, formation and temporal evolution of coherent phase space structures
has been investigated theoretically in the 1D electrostatic bump-on-tail problem [3, 4].
It has been shown that holes and clumps form spontaneously in the near threshold limit
when the kinetic drive 7, from the resonant particles just exceeds the dissipative damping
vq from the thermal plasma. Moreover, fast particle collisions and sources are important
for the wave evolution: Both velocity space diffusion and Krook-type collisions tend to
suppress holes and clumps, while drag enhances the hole/clump formation and gives rise
to up/down asymmetric frequency sweeping that differs for holes and clumps.

Most previous investigations were limited to short range frequency sweeping phenom-
ena, where the linear mode structure of the initial perturbation is preserved. In contrast,
long range frequency sweeping involves significant changes in the mode amplitude and
profile, which alters the ensuing sweeping rates. In this contribution, we generalize the
long range formalism in [5] by accounting for fast particle sources and collisions and al-
lowing the wave field to evolve in more general plasma equilibria. In particular, we focus
on non-monotonic, so called hooked, frequency sweeping of holes, which can only occur
when the fast particle collision operator contains drag. The investigation is performed by
transforming to the moving reference frame of an isolated hole, thus enabling an efficient

adiabatic description of the corresponding resonant particles.

II. Adiabatic Model We investigate a low amplitude, electrostatic perturbation, with a
prescribed period A, in a 1D bump-on-tail configuration. The model contains three plasma
species: A population of static ions; a linear fluid background of cold electrons, subject
to weak collisions; a low density population of energetic electrons, which are treated
kinetically, including the effects of sources and collisional relaxation. The gradient of the
fast electron equilibrium distribution function Fj (v) provides a linear growth rate -z,

while the dissipation in the background species, due to the infrequent collisions, damps
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the wave linearly at a rate 7. With this setup, it has been shown that holes and clumps
form spontaneously in the near threshold limit 0 < v, —v; < 1, see e.g. [4].

We focus our attention on the evolution of already established holes and clumps.
In this adiabatic regime, the wave evolution is much slower than the bounce motion of
electrons trapped in the wave field. The perturbation of interest is then a slowly evolving,
BGK-like [6] wave with a time dependent frequency, which we choose to represent in terms
of the wave potential energy U (z — s (t);t). Here, U is periodic in its rapidly varying
first argument, describing oscillations at the wave carrier frequency w ~ w,, and slowly
changing with respect to its second argument, which describes the evolution of the wave
amplitude and structure. Moreover, the wave phase velocity $(t) changes slowly. To be

specific, we focus on the case
d/dt[InU , In$| < wp < w, (1)

where wp denotes the bounce frequency of the particles trapped in the wave field.
The ordering (1) simplifies the treatment of the fast electrons, whose motion is gov-

erned by the wave frame Hamiltonian

(p —mes (1))’
2m,

H= +U(z=x—s(t);t) . (2)
At any moment, the (z,p) phase space portrait of H defines a separatrix (cf. Figure
1) centered around p = m.$, which can be viewed as a rigid boundary: As the phase
velocity of the wave changes, the trapped electrons are convected along while the passing
electrons are forced to jump over the moving separatrix. This natural separation of the
fast electrons allows us to treat trapped and passing particles individually: The passing
electron distribution function is assumed to be given by the equilibrium F,. For the

trapped electrons, on the other hand, we adopt the adiabatic invariant (cf. Figure 1)

J:Ja{\/mie(é’—U(z))dz (3)

as an action variable. The new Hamiltonian then becomes independent of the correspond-

ing canonical angle 6, which implies that the trapped electron distribution f is a slowly
evolving function of merely J. It is then advantageous to average the trapped electron

kinetic equation over the bounce motion of the trapped electrons, yielding

(4)
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Here, the trapped electrons are represented by their bounce averaged perturbed distri-

bution §f = (f) — Fy (3), with (...) the bounce average, and the sources and collisions
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are modeled with a combination of Krook collisions, drag (slowing-down) and velocity
space diffusion. The parameters (3, a and v are the corresponding collision frequencies,
and k = 27/ is the wave number. The function p accounts for the velocity profile of the

equilibrium slope, cf. Figure 1. Note that §f must vanish at separatrix.
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Figure 1: Left: Separatrix structure in wave frame phase space with coordi-
nates (z,p). The colored areas represent trapped and passing particle actions.
Right: The blue line portrays the fast particle ”bump-on-tail” distribution used
throughout this investigation. The green line is a critical distribution that keeps
the wave amplitude constant throughout the evolution.

Moreover, knowing &f and the phase velocity $, the ordering (1) enables one to con-

veniently solve the adiabatic Poisson equation [5],

g_U n “’_5 / / Sfdvdz — / v (5)

as a boundary value problem for U.

Finally, the set of equations in the adiabatic model is closed by noting that in the
adiabatic limit, the power dissipated in the cold electron background must balance the
power released from the fast electrons during the mode evolution. Thus, a power balance

condition can be written as [4]

mes(s—l— )//5fd dz Trldsé/(]?(z) dz (6)

which constitutes a third relation between $, U and df .

I1I. Hooked Frequency Sweeping In Figure 2, we present graphs displaying non-
monotonic frequency sweeping of holes in the equilibrium distribution presented in Fig-
ure 1. The results are obtained by means of the adiabatic model, i.e. by solving self-
consistently equations (4), (5) and (6), with (normalized) collisional parameters & = 0.4,
B = 0,2 and ¥ = 0. We see that hooked frequency sweeping results with and without
Krook collisions when a # 0, although the effect is more pronounced when B # 0. With-

out Krook, the sweeping reversal is explained by looking at equation (6): As the mode
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Figure 2: Two different cases of non-monotonic frequency sweeping when
« # 0. The blue line is for 3 # 0. The green line demonstrates the occurence
of hooks due to the varying equilibrium slope alone, i.e. when g = 0.

initially sweeps towards higher frequency, the amplitude decreases. For the hole, this is
due to the chosen fast electron equilibrium distribution function being sub-critical (cf. Fig-
ure 1) above the linear resonance. The corresponding amplitude evolution is shown in
the plot to the right in Figure 2, where the green line depicts the case E = 0. Eventually,
the sweeping reaches a point where the right hand side balances the a?/k-term in (6). At
this stage, § = 0, and the sweeping reverses.

With Krook, the reversal point is reached earlier in the evolution, and the concomitant
down-sweep is faster than with 5 = (. The explanation can once again be found by looking
at the amplitude evolution: Krook collisions tend to decrease the perturbed fast electron
distribution function, i.e. the hole depth, exponentially in time. Through the Poisson
equation (5), this results in a quicker reduction of the wave amplitude, as seen in Figure
2. Therefore, the reversal occurs earlier in the evolution, and at lower frequency. In fact,
the effect of velocity space diffusion is very similar to Krook collisions, so we would expect
the same behavior with nonzero v. It is worth noting that in the limit ¢ — 0, both curves
in Figure 1 tend to the short range, square root result w o< /¢, confirming the picture

that collisions do not significantly alter the initial frequency sweeping rate.
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