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I. Introduction Alfvénic waves driven unstable by energetic particles in magnetic con-

finement devices often evolve into a strongly nonlinear regime, characterized by bursting

mode amplitudes and significant frequency sweeping [1, 2]. Such events are intimately

associated with the formation of long-living structures in the fast particle distribution

function, so called holes and clumps, comprised of resonant particles moving coherently

in phase space. As these entities evolve due to dissipation, the frequencies of the observed

signals may diverge from the initial resonance.

The occurence, formation and temporal evolution of coherent phase space structures

has been investigated theoretically in the 1D electrostatic bump-on-tail problem [3, 4].

It has been shown that holes and clumps form spontaneously in the near threshold limit

when the kinetic drive γL from the resonant particles just exceeds the dissipative damping

γd from the thermal plasma. Moreover, fast particle collisions and sources are important

for the wave evolution: Both velocity space diffusion and Krook-type collisions tend to

suppress holes and clumps, while drag enhances the hole/clump formation and gives rise

to up/down asymmetric frequency sweeping that differs for holes and clumps.

Most previous investigations were limited to short range frequency sweeping phenom-

ena, where the linear mode structure of the initial perturbation is preserved. In contrast,

long range frequency sweeping involves significant changes in the mode amplitude and

profile, which alters the ensuing sweeping rates. In this contribution, we generalize the

long range formalism in [5] by accounting for fast particle sources and collisions and al-

lowing the wave field to evolve in more general plasma equilibria. In particular, we focus

on non-monotonic, so called hooked, frequency sweeping of holes, which can only occur

when the fast particle collision operator contains drag. The investigation is performed by

transforming to the moving reference frame of an isolated hole, thus enabling an efficient

adiabatic description of the corresponding resonant particles.

II. Adiabatic Model We investigate a low amplitude, electrostatic perturbation, with a

prescribed period λ, in a 1D bump-on-tail configuration. The model contains three plasma

species: A population of static ions; a linear fluid background of cold electrons, subject

to weak collisions; a low density population of energetic electrons, which are treated

kinetically, including the effects of sources and collisional relaxation. The gradient of the

fast electron equilibrium distribution function F0 (v) provides a linear growth rate γL,

while the dissipation in the background species, due to the infrequent collisions, damps
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the wave linearly at a rate γd. With this setup, it has been shown that holes and clumps

form spontaneously in the near threshold limit 0 < γL − γd ≪ 1, see e.g. [4].

We focus our attention on the evolution of already established holes and clumps.

In this adiabatic regime, the wave evolution is much slower than the bounce motion of

electrons trapped in the wave field. The perturbation of interest is then a slowly evolving,

BGK-like [6] wave with a time dependent frequency, which we choose to represent in terms

of the wave potential energy U (x− s (t) ; t). Here, U is periodic in its rapidly varying

first argument, describing oscillations at the wave carrier frequency ω ∼ ωp, and slowly

changing with respect to its second argument, which describes the evolution of the wave

amplitude and structure. Moreover, the wave phase velocity ṡ (t) changes slowly. To be

specific, we focus on the case

d/dt [ ln U , ln ṡ ] ≪ ωB ≪ ω , (1)

where ωB denotes the bounce frequency of the particles trapped in the wave field.

The ordering (1) simplifies the treatment of the fast electrons, whose motion is gov-

erned by the wave frame Hamiltonian

H =
(p−meṡ (t))2

2me
+ U (z ≡ x− s (t) ; t) . (2)

At any moment, the (z, p) phase space portrait of H defines a separatrix (cf. Figure

1) centered around p = meṡ, which can be viewed as a rigid boundary: As the phase

velocity of the wave changes, the trapped electrons are convected along while the passing

electrons are forced to jump over the moving separatrix. This natural separation of the

fast electrons allows us to treat trapped and passing particles individually: The passing

electron distribution function is assumed to be given by the equilibrium F0. For the

trapped electrons, on the other hand, we adopt the adiabatic invariant (cf. Figure 1)

J =

∮ √
2

me
(E − U (z)) dz (3)

as an action variable. The new Hamiltonian then becomes independent of the correspond-

ing canonical angle θ, which implies that the trapped electron distribution f is a slowly

evolving function of merely J . It is then advantageous to average the trapped electron

kinetic equation over the bounce motion of the trapped electrons, yielding

∂ δf

∂t
+ β δf = −ρ (ṡ)

[
s̈ +

α2

k

]
+ me

ν3

k2

∂

∂J

[
J

dJ

dE
∂ δf

∂J

]
. (4)

Here, the trapped electrons are represented by their bounce averaged perturbed distri-

bution δf ≡ 〈f〉 − F0 (ṡ), with 〈. . . 〉 the bounce average, and the sources and collisions
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are modeled with a combination of Krook collisions, drag (slowing-down) and velocity

space diffusion. The parameters β, α and ν are the corresponding collision frequencies,

and k = 2π/λ is the wave number. The function ρ accounts for the velocity profile of the

equilibrium slope, cf. Figure 1. Note that δf must vanish at separatrix.
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Figure 1: Left: Separatrix structure in wave frame phase space with coordi-
nates (z, p). The colored areas represent trapped and passing particle actions.
Right: The blue line portrays the fast particle ”bump-on-tail” distribution used
throughout this investigation. The green line is a critical distribution that keeps
the wave amplitude constant throughout the evolution.

Moreover, knowing δf and the phase velocity ṡ, the ordering (1) enables one to con-

veniently solve the adiabatic Poisson equation [5],

∂2U

∂z2
+

ω2
p

ṡ2
U =

e2

ǫ0




λ∫

0

∫
δfdvdz −

∫
δfdv


 , (5)

as a boundary value problem for U .

Finally, the set of equations in the adiabatic model is closed by noting that in the

adiabatic limit, the power dissipated in the cold electron background must balance the

power released from the fast electrons during the mode evolution. Thus, a power balance

condition can be written as [4]

me ṡ

(
s̈ +

α2

k

) λ∫

0

∫
δf dv dz =

2γdλ

meṡ2

λ∫

0

U2 (z) dz , (6)

which constitutes a third relation between ṡ, U and δf .

III. Hooked Frequency Sweeping In Figure 2, we present graphs displaying non-

monotonic frequency sweeping of holes in the equilibrium distribution presented in Fig-

ure 1. The results are obtained by means of the adiabatic model, i.e. by solving self-

consistently equations (4), (5) and (6), with (normalized) collisional parameters α̃ = 0.4,

β̃ = 0, 2 and ν̃ = 0. We see that hooked frequency sweeping results with and without

Krook collisions when α̃ 6= 0, although the effect is more pronounced when β̃ 6= 0. With-

out Krook, the sweeping reversal is explained by looking at equation (6): As the mode
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Figure 2: Two different cases of non-monotonic frequency sweeping when
α 6= 0. The blue line is for β 6= 0. The green line demonstrates the occurence
of hooks due to the varying equilibrium slope alone, i.e. when β = 0.

initially sweeps towards higher frequency, the amplitude decreases. For the hole, this is

due to the chosen fast electron equilibrium distribution function being sub-critical (cf. Fig-

ure 1) above the linear resonance. The corresponding amplitude evolution is shown in

the plot to the right in Figure 2, where the green line depicts the case β̃ = 0. Eventually,

the sweeping reaches a point where the right hand side balances the α2/k-term in (6). At

this stage, s̈ = 0, and the sweeping reverses.

With Krook, the reversal point is reached earlier in the evolution, and the concomitant

down-sweep is faster than with β̃ = 0. The explanation can once again be found by looking

at the amplitude evolution: Krook collisions tend to decrease the perturbed fast electron

distribution function, i.e. the hole depth, exponentially in time. Through the Poisson

equation (5), this results in a quicker reduction of the wave amplitude, as seen in Figure

2. Therefore, the reversal occurs earlier in the evolution, and at lower frequency. In fact,

the effect of velocity space diffusion is very similar to Krook collisions, so we would expect

the same behavior with nonzero ν̃. It is worth noting that in the limit t → 0, both curves

in Figure 1 tend to the short range, square root result ω ∝
√

t, confirming the picture

that collisions do not significantly alter the initial frequency sweeping rate.
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