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I. Introduction. The appearance of transport barriers in plasmas in relation to sheared flows
has been studied since the discovery of the H-mode three decades ago, based on the premise
that an increased shear leads to turbulence suppression. This gives rise to barriers for turbulent
transport but is also known that barriers to chaotic transport can arise in regions of zero shear
[1]. The presence of these barriers is linked to non-twist Hamiltonian systems which provide a
description of transport for particles under the EXB drift approximation. The studies so far have
been based on the guiding center description which assumes zero Larmor radius. However, the
effect of finite Larmor radius (FLR) should be of importance for the high temperature ITER-like
plasmas and especially for fusion-generated alpha particles.

Here we study chaotic transport in non-monotonic zonal flows taking into account FLR ef-
fects. The results found for zero Larmor radius can be summarized as follows: (a) shearless
regions of the zonal flow contain transport barriers, (b) fluctuations related to drift waves de-
stroy invariant surfaces that contain particles, (c) the shearless surface is very robust and is the

last to break, for high fluctuation levels.

I1. Gyroaverage particle model.

The model is based on a test particle subject to the EXB drift velocity, which assumes the
particle follows the guiding center velocity. For finite gyroradii the particle actually samples
spatial regions around the guiding center and this effect can be accounted by taking the average

of the drift equations over the gyroradius. Thus, the equations are

@:_<a_¢> d_y:<a_‘7’> (1)
dt Ay /e’ dt x /g

where the gyroaverage, (), is defined as (¥)g = - OM‘P(x—l—pcos 0,y+psinB)do . This

represents a Hamiltonian system with (¢ )¢ as the Hamiltonian. In our model ¢ = ¢y + ¢ where

dgy

T = sech’x, and the fluctuations ¢@; are given by two

@ is the zonal flow, given by iip(x) =
modes of the Hasegawa-Mima equation, in the co-moving frame of one mode. Its gyroaverage
is,

(9)6 = Jop (x) — Nx+ €17}, , (x) cos(k1y) + &, , (x) cos (kay — 01) (2)
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where the prime denotes the derivative of the function Ji, (x), which is defined by,

1 T
Jp(x) = E/ tanh (x+ pcos 0)cos (kpsin0)do . 3)
0
For small p it is,
p2 k2
Jp(x) = {1 5 (sech2x+ ?)} tanhx + 0(p). 4)

The equations 1 with 2 are integrated to determine the particle evolution. The phase space (in
our case the x — y space) topology of this system can be analyzed for & = 0. In general, it is
characterized by two resonances on each side of the shearless point, where the mode velocity
equals the flow velocity. For p = 0 the resonances can form two separate chains of islands
(heteroclinic, when wave amplitude is low) or they can join in coupled chains (homoclinic,
for large wave amplitude). For finite p two interesting results are found [2]: as p increases (a)
there is a bifurcation of the shearless curve corresponding to the effective flow profile transiting
from a single maximum to two maxima and a minimum, and (b) the topology changes from

heteroclinic to homoclinic by means of separatrix reconnection.

I11. Chaotic transport. When the time dependent term is included (& # 0) the system in non-
integrable and invariant surfaces can break up leading to chaotic trajectories. The results can
be presented as Poincaré surface of section plots in order to follow the particles in the x —y
plane and monitor their radial displacements (x direction here). The particle crosses the surface
of section every wave period (T = 27/®). When p = 0 as the amplitude &, increases more
and more trajectories become chaotic until the shearless surface itself turns chaotic and global
chaos is set, which means the transport barrier has disappeared. The FLR effect on transport
can be seen in Fig.1 for hetroclinic case. For large enough & = 0.05 the transport is chaotic
for zero Larmor radius but as p increases the trajectories become more regular until the trans-
port barrier is restored. Since, the shearless curve (SC) is the most robust we can determine the
point of barrier break-up by tracking the behavior of this curve. This can be made using the
indicator points (IP) method [3]. The IP are defined in terms of the evolution operator given
by the solution of Egs. (1) at time ¢ and the symmetry transformations obeyed by the system
S:{X =—x;y'=y+n/ki} and [y : {x' = x;y' = —y}, noting that, for the period T, G = I 1,
where the involution I; = Grly. Then the IP satisfy Io(x,y) = S(x,y) or I;(x,y) = S(x,y), or
equivalently Gr(x,y) = Sly(x,y) = (—x,—y+ m/k;). The IP are part of the SC so they can be
iterated with the operator Gr in order to create a Poincaré section of the SC. We follow the

method in [4] to find the IP and the resulting SC is shown in Fig.2 for heteroclinic topology,
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Figure 1: Gyro-phase average induced Figure 2: Shearless curve (red) together with
chaotic transport suppression for hete- chaotic particle trajectories, showing it forms
roclinic topology. a region where the particles cannot cross.
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Figure 3: Threshold for the destruction of the shearless curve for (a) heteroclinic geometry when

p = 0 and (b) homoclinic geometry at p = 0.

embeded in the chaotic map, but still unbroken. Similar results are found for the homoclinic
case.

The SC becomes chaotic for certain value of & at which point transport barriers disappear.
The effect of FLR on the break-up of the SC can be seen in Fig.3 where we have determined the
values of p and &, for which the SC ceases to exist, for both topologies (at p = 0). This diagram
is similar to the bird-wing of Refs.[3,4], and exhibits an irregular threshold of a fractal type.

Next we examined the transport barrier effectiveness over a thermal distribution of particles.
For this we take a Maxwellian distribution of Larmor radii and follow them from an initial
region about the separatrix X-point. The fraction of particles crossing the SC is shown in Fig.4

for parameters corresponding to what would be hetroclinic and homoclinic topologies at p = 0.
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Figure 4: Fraction of thermal particles crossing from one side to the other of the barrier that
would be present when p = 0, corresponding to (a) heteroclinic geometry when p = 0 and (b)

homoclinic geometry at p = 0.

Finally, the nature of transport in the poloidal (y) direction can be analyzed by following a
group of particles about the X-point. Some particles follow the zonal flow, others are trapped
within an eddy and a third group (sticky-flight) alternates between eddies and zonal flow. We
isolate the later and compute the mean M and variance 62 of the y-displacement. The time

2 ~ 17, determines the nature of transport. Fig.5 shows that ¥ ~ 1, meaning

scaling, M ~ tX, o
normal convection, but ¥ > 1 indicating superdiffusive transport. Using the approximation eq.4,
we find that y = 1.7 for heteroclinic and y = 1.73 for homoclinic cases but they are the same for

all values of p. So, FLR effects seem to be unimportant for y-transport to this approximation.
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