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1. Introduction

Simulation of Neoclassical Tearing Modes (NTM) are carried out with the non linear MHD

code XTOR-2F [1]. Modelling of those non linear instabilities are of great importance as it is

strongly expected that they will limit the operational conditions for future experiments and reac-

tors. Recently, a new model has been implemented in the code. It consists in the generalization

of the pressure through the parallel viscous stress tensor and provides a consistent treatment of

the neoclassical physics. In this framework, non linear (2,1) modes that are unstable above a

certain threshold have been obtained. They have been characterized to be NTMs. The critical

island width is found to be larger with the new model than with the previous implementation

that evolved as a function of the pressure gradient.

2. Physical model

The viscous stress tensor has been implemented in a Chew-Goldberger-Low (CGL) form [4]:
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with the pressure anisotropy given by:
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where s = i,e corresponds to the ions and electrons, respectively. The neoclassical coefficients

µs and ks = µs,2/µs,1 are calculated according to [5]. In the present paper, only the perpendic-

ular component of the heat flux has been taken into account. The parallel viscous stress tensor

appears both in the momentum equation and Ohm’s law in the normalized framework of XTOR:

ρ∂tV =−ρ (V ·∇V+V∗i ·∇V⊥)+J×B−∇p− fµi∇ ·Π‖i +ν∇2 (V+V∗i ) (3)
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where the neoclassical resistivity is given by η ≈ ηSP (νei + µe)/νei with ηSP the Spitzer re-

sistivity. α = 1/(ωciτA) scales to the diamagnetic contribution, τA the Alfvén time and ωci the
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ion cyclotron frequency. ∇ ·Π‖i in the momentum equation drives ion poloidal velocity while

∇ ·Π‖e generates the bootstrap current. The ad-hoc coefficients fµi and fbs have been introduced

in order to scan neoclassical friction and bootstrap current amplitudes.

3. NTM threshold simulations

Figure 1: Evolution of the magnetic island width

for a stable and an unstable case for a circular

cross-section case.

For NTM simulations purpose, a circu-

lar cross-section plasma with βN = 1.59 is

considered. Other important parameters are

qmin = 1.15 and α = 0.03. In this configura-

tion, the (2,1) mode is linearly stable and the

bootstrap current is sufficiently large to en-

able non linear destabilization.

Figure 1 shows a stable and an unstable

case. It points out the presence of a non lin-

ear threshold above which the seed islands

become unstable at a size corresponding to

about 2.95% of the small radius.

Figure 2: Critical island size as a function of the

parameter fBS for three different models for the

bootstrap current ( fµi = 1).

A way to determine if the mode observed

is a NTM is to verify that its drive is due

to the bootstrap current perturbation. For this

purpose, a scan of the coefficient fbs is per-

formed. When it is increased, the bootstrap

current fraction and thus its perturbation for

a given seed island is larger. In this case, the

threshold above which the mode is unstable

should be reduced if we are in presence of

NTMs. This is exactly the behaviour that is

obtained with the model where ∇ ·Πi and

∇ ·Πe are given by Eqs. (1)-(2) and that is

shown in Figure 2 (crosses). The non linear mode is thus confirmed to be a NTM.

Two other models are displayed on the same figure. All of them take into account the ion

viscous stress tensor in the momentum equation. The first one uses also the bootstrap current

form (4) but the fluid velocity is replaced by the neoclassical velocity (
〈
∇ ·Π‖i

〉
= 0 ⇒ Vneo =

−V∗i −kiV∗Ti) in the electron viscous stress tensor. The second one corresponds to an expression

of the bootstrap current that varies as a function of the pressure gradient (JBS = JBS,0(∇p/p′0)b
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where JBS,0 is given by Sauter model [2, 3]).

Figure 3: Flux averaged bootstrap current for

two different models for fBS = 1.

The points have been placed so that, for a

given fBS, the local bootstrap current at the

q = 2 surface is the same. An example is dis-

played in Figure 3. The difference between

both profiles is mainly due to the fact that

the parallel heat flow is not retained presently

in the model described by Eqs. (1)-(4). The

radial derivative is for example not the same

at q = 2 surface. The main observation from

Figure 2 is that the complete neoclassical

model gives the highest critical island width.

Part of the difference between critical is-

land widths comes from the linear growth rate

itself. The farther it is from the stable-unstable limit, the larger will be the critical seed island re-

quired to destabilize the NTM. In all the models presented here, the bootstrap current increases

the linear growth rate. The discrepancy between the two formulations that use Eq. (4) is caused

by other terms of the momentum equation that are at the origin of the difference between fluid

and neoclassical velocities. By increasing fµi , the influence of the ion viscous stress tensor is

raised so that the velocity approaches its neoclassical value. Figure 4 (left) shows that in that

case, the difference between their growth rate is also reduced. We can also deduce from it that

the discrepancy between fluid and neoclassical velocity has a stabilizing effect.

Finally the structure of the perturbed bootstrap current is investigated. In the case of the boot-

strap current form that varies with the pressure gradient, the reduction of the average bootstrap

current at the magnetic island position and the presence of the m = 2 mode make appear holes

at the O-points, which are the driving source of NTMs. Such a direct observation is no more

possible with the complete neoclassical model (Fig. 4 (right)). In this case the perturbation is

composed of a large quantity of modes that appears inside or close to the magnetic island. It

is due to the poloidal variation of the bootstrap current. Anyway, even if they are not clearly

visible, the terms necessary to the development of NTMs are present.

5. Conclusions

Studies of NTM driving mechanisms have been undertaken with the newly implemented

model based on the parallel component of viscous stress tensor. The (2,1) mode that has been

obtained is unstable above a critical island width. It has been shown to be a NTM as the non
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Figure 4: Left: Linear growth rate as a function the parameter fµi for the two models with

the electron viscous stress tensor in the bootstrap current ( fBS = 1). Right: Perturbation of the

bootstrap current in an unstable case with the complete neoclassical model.

linear threshold is reduced by the increase of the bootstrap current fraction. The complete neo-

classical model has been compared with two other formulations in order to better understand its

effect on the NTM threshold. The fact that ion velocity does not follow exactly the neoclassical

drive provided by the ion viscous stress tensor increases the critical island size. Finally the drive

for NTM, i.e. a lack of bootstrap current at the O-point, is only a small part of the perturbed

bootstrap current structure that is obtained with the complete neoclassical model.
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