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The spatiotemporal self-organization of visco-resistive magnetohydrodynamics (MHD)
in a toroidal geometry is studied. It is observed that a flow is generated spontaneously,
which evolves from dominantly poloidal to dominantly toroidal when the Lundquist num-
ber is increased. Up-down asymmetry of the geometry is necessary to generate a non-zero
net toroidal mass-flow.
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like the situation in cylindrical geometry. Figure 1: Cross-sections of the toroidal geome-
Therefore the magneto-fluid cannot remain tries considered in the present work. The toroidal

quiescent, but will necessarily move. The direction is labelled 6 and the poloidal ¢.

possible steady state solutions in toroidal ge-
ometry with circular and non-circular cross-section were subsequently investigated in the work
by Kamp and Montgomery [2].

At large Lundquist number, the dynamics of the visco-resistive MHD equations give rise to
chaotic and turbulent behavior [3]. The resulting velocity field is then most probably not the one
which is observed in the axi-symmetric time-independent case. In the present communication
we therefore investigate the fully three-dimensional, non-stationary problem. The investigation
of the dynamics of the full three-dimensional set of equations in complex geometry by direct
numerical simulation at moderate Lundquist number has become possible only recently. We

use the volume-penalization technique, an immersed boundary method, which we consider a
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good compromise between the ease of implementation, flexibility in geometry, and the nume-
rical cost of the simulation. Results of confined visco-resistive MHD in two dimensions can be
found in reference [4]. We recently extended this method to three-dimensions and in the present
communication we present the results of simulations in toroidal geometries with circular and

asymmetric-‘D’-shaped cross section.

MHD equations, dimensionless numbers and boundary conditions
We numerically solve the dimensionless incompressible viscoresistive MHD equations for

the velocity field # and for the magnetic field B, in ‘Alfvénic’ units [2],
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with the current density j = V x B, the vorticity @ = V x u and the pressure P. These equations
are non-dimensionalized using the toroidal Alfvén speed C4 = Bo/./pHo as typical velocity,
with By the reference toroidal magnetic field at the center of the torus (R = Rp), p the density
and Uo the magnetic constant. The reference length L (see Fig. 1) is the diameter of the cross
section for the circular case and is the minor diameter for the asymmetric ‘D’ shape (L = 0.94
for both geometries). The dynamics are then governed by the initial and boundary conditions
of the problem, and two dimensionless quantities: the viscous Lundquist number (M) and the
Lundquist number (§) defined as

L L
=Gl oGl
14 A

with A the magnetic diffusivity and v the kinematic viscosity. The ratio of these two quantities

“4)

is the magnetic Prandtl number P, = v/A, which we have chosen unity in the present study,
thereby reducing the number of free parameters, which characterize the magnetofluid, to one,
the Lundquist number, M.

The initial condition for the simulation is zero velocity, and no-slip velocity boundary con-
ditions are imposed. We consider the boundaries of the fluid domain as perfect conducting and
coated with an infinitely thin layer of insulator. Thereby the normal component at the wall of
the magnetic and current density field vanish. We impose curl-free toroidal magnetic and elec-
tric fields. Considering a uniform resistivity, this leads to the following relations for the toroidal
magnetic field Bg,, and current density Jg,,,

Ry Ro
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The last equation is integrated numerically using the Biot-Savart law to determine the poloidal
magnetic field Bg,,,. All the simulations presented in this communication are performed with
Bo = 0.8 and Jy = 0.3. This corresponds, for both geometries, to a pinch ratio ® ~ 0.16, defined
as the ratio between the wall-averaged poloidal and the volume-averaged toroidal magnetic
field (® = By/ < Bg >). The only parameter that we vary is the Lundquist number M. The

simulations are time-dependent and they are stopped when a dynamical steady state is reached.

Three-dimensional flows in toroidal geometries

The results in Fig. 2 show the presence of a poloidal flow, a pair of counter-rotating vortices
in the r — ¢ plane. These vortices move in opposite toroidal direction. This toroidal velocity
increases with the Lundquist number M in the two considered geometries. For the circular cross
section the three-dimensional velocity streamlines show a substantial change of topology from

dominantly poloidal to dominantly toroidal flow (see Fig. 2).
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Figure 2: Streamlines colored with the value of the toroidal velocity, ug, for M = 7.5 (left) and

M =775.2 (right).

For both the symmetric and asymmetric geometry the square toroidal velocity saturates for
increasing M at a value of ~ 86% of the total square speed (see Fig. 3). The principal direction
of the flow motion is toroidal if M is raised beyond ~ 40.

For the asymmetric geometry, for low M, a poloidal pair of counter-rotating vortices appears
as for the symmetric case. Similarly, if the Lundquist number is increased, an important toroidal
flow develops. Unlike the symmetric case, there is a breaking of the symmetry in the flow and
the part of the flow moving in the negative direction (the red and yellow zone), becomes larger
on expense of the part of the flow which moves in the positive toroidal direction (blue zone).
This symmetry breaking, illustrated in Fig. 5, leads to the development of a net toroidal flow.
We quantify this using the volume-average toroidal angular momentum, < Lg >= % JyR-updV,
which is non-zero (see Fig. 4). Its normalized value increases significantly with the Lundquist

number.
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Figure 3: u3 /|u?| as a function of M. Figure 4: | < Lg > |/Lg,,, as a function of M.

Figure 5: Streamlines (2D) colored with the value of the toroidal velocity, ug, for M = 7.5 (left),
M = 376 (center) and M = 1504 (right).

We want to stress this last result: considering curl-free toroidal electric and magnetic
fields and constant transport coefficients, visco-resistive magnetofluids spontaneously gen-
erate angular momentum, if the up-down symmetry of the torus is broken. This is a non-

linear effect which becomes negligible in the limit of small Lundquist number.

References

[1] D. Montgomery and X. Shan, Comments on Plasma Phys. & Contr. Fusion 15, 315 (1994).
[2] L.P. Kamp and D.C. Montgomery, Journal of Plasma Physics 70, 113-142, (2004).
[3] X, Shan, D. Montgomery and H. Chen, Physical Review A 44, 6800-6818, (1991).

[4] W..T. Bos, S. Neffaa and K. Schneider, Physical Review Letters 23, 235003, (2008).



