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Since plasma flow is common in astrophysical systems and play a role in the transition to

improved confinement regimes of magnetic confinement devices there has been an increasing

interest to self consistent equilibria with flow. In the static regime the most known and widely

employed axisymmetric magnetohydrodynamic (MHD) analytic equilibrium is associated with

the Solovév solution of the Grad-Sfafranov (GS) equation [1]. This solution, however has a

limited number of free parameters which puts a restriction on the construction of realistic con-

figurations, particularly ITER-like ones with a single lower x-point. This drawback was recently

eliminated by an extension of the solution to contain arbitrary number of free parameters [2, 3].

Consequently, a variety of equilibria were constructed with boundary shaping pertinent to lab-

oratory fusion plasmas and desirable values of confinement figures of merit. Aim of the present

contribution is to extend further this Solovév solution to plasmas with incompressible flow par-

allel to the magnetic field on the basis of a generalized GS equation [Eq. (1) below]. Then,

ITER-like equilibria are constructed. A stability consideration is also made by means of a suf-

ficient condition for linear stability [8].

We start from the generalized GS equation for field aligned incompressible flows,

∆⋆u+
1
2

d
du

(
X2

1−M2

)
+ µ0R2 dPs

du
= 0, (1)

together with the Bernoulli relation for the pressure,

P = Ps(u)−ρ
v2

2
. (2)

Here, (z,R,ϕ) are cylindrical coordinates with z corresponding to the axis of symmetry; the

function u(R,z) labels the magnetic surfaces; M(u) is the Mach function of the velocity with

respect to the Alfvén velocity; ρ(u) is the density and X(u) relates to the toroidal magnetic

field; for vanishing flow the surface function Ps(u) coincides with the pressure; v is the velocity

modulus which can be expressed in terms of surface functions and R; and ∆⋆ = R2∇ · (∇/R2).

Derivation of (1) and (2) in the general case of flows non-parallel to the magnetic field is pro-

vided in [4] and [5]. Note that (1) is identical in form with the usual (static) GS equation.
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Therefore, any analytic solution to the GS equation can be smoothly extended to the parallel

flow case. For convenience we will introduce dimensionless quantities by R̃ = R/R0, z̃ = z/R0,

ũ = u/(B0R2
0), ρ̃ = ρ/ρ0, P̃ = P/(B2

0/µ0); j̃ = j/(B0/(µ0R0)), where j is the current density, and

ṽ = v/vA0, where vA0 = B0/
√µ0ρ0. The free parameters R0 and B0 are the radial coordinate of

the geometric center of the configuration and the vacuum toroidal magnetic field thereon. Then,

Eq. (1) remains identical in form for the tilted quantities by formally setting µ0 = 1. In the

following the tilde will be dropped on the understanding of non-dimensionality.

By making the Solovév-like linearizing ansatz Ps = P1u and X2/(1−M2) = X2
0 + 2X1u, the

resulting form of Eq. (1) admits the following solution which consists the basis of the present

study:

u = up +uh, up =
P1

8
R4− X1

2
z2, (3)

uh = c1 + c2
R2

2
+ c3

(
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R2

2
−R2 lnR

)
+ c4

(
z2R2

2
− R4

8

)

+c5

(
z4 +3z2R2− 15R4

8
−6z2R2 lnR+

3
2

R4 lnR
)

+ c6

(
z4R2

2
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4
+

R6
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)

+c7
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2
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8
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2
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+d1z+d2
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2
+d3

(
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2
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)
+d4

(
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2
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8

)

+d5

(
z5 +5z3R2− 75zR4

8
−10z3R2 lnR+

15
2

zR4 lnR
)

, (4)

Here, uh is the solution of the homogeneous equation and up is a particular solution of the inho-

mogeneous equation. uh consists of a symmetric in z part in connection with the coefficients ci

and an asymmetric in z part in connection with the coefficients d j. The construction of this so-

lution is based on an iterative algorithm which is explained in Sec. 2 of [3]. For d j = 0 the equi-

librium is up-down symmetric while an ITER-like equilibrium requires non symmetric terms.

Note that X0 = 1 because of the adopted normalization. It is emphasized that (3)-(4) hold for

arbitrary Mach functions and densities. By exploiting the free parameters we have constructed

ITER-like configurations with the following characteristics: major radius R0 = 6.2m, minor ra-

dius a = 2m, elongation κ = 1.33, triangularity δ = 0.33, safety factor on axis in the interval

1≤ qa ≤ 2 and average toroidal beta βt ≈ 0.01. The parametric values were fixed, similar to [2],

by solving numerically the set of equations to follow in connection with the boundary shape

and confinement figures of merit. First, without prescribing completely the boundary curve

we impose u to vanish at four characteristic fixed points of the boundary, i.e. the inner point,

(Rin,z = 0), the outer point, (Rout ,z = 0), the higher point, (Ru,zu), and the (lower) x-point,

(Rx,zx): u(Rin,0) = u(Rout ,0) = u(Ru,zu) = u(Rx,zx) = 0. At the higher point and the x-point should

hold the relations ∂u
∂R(Ru,zu) = 0, ∂u

∂R(Rx,zx) = ∂u
∂ z (Rx,zx) = 0. Also, we require that the configu-
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ration is up-down symmetric near the plane z = 0: ∂u
∂ z (Rin,0) = ∂u

∂ z (Rout ,0) = 0. Furthermore, it

can be shown that the curvature of the bounding curve at the inner, outer and higher points

should satisfy the relations [2] ∂ 2u
∂ z2 (Rin,0) = −N1

∂u
∂R(Rin,0), ∂ 2u

∂ z2 (Rout ,0) = −N2
∂u
∂R(Rout ,0),

∂ 2u
∂R2 (Ru,zu) =−N3

∂u
∂ z (Ru,zu), where N1 = (1−α)2

εκ2 , N2 =− (1+α)2

εκ2 , N3 =−κ
ε cosα2, α = arcsinδ .

In addition to the above boundary shaping equations we employ for the safety factor on axis and

the toroidal beta the relations:

qa =
X

R
√

1−M2

(
∂ 2u
∂R2

∂ 2u
∂ z2

)−1/2
∣∣∣∣∣
R=Ra,z=za

, (5)

where (Ra, za) is the position of the magnetic axis, and βt =
∫
V Pdτ

B2
0/(2µ0)

. Regarding the flow, we

adopted the following alternative choices of M2:

M2 = M2
a

(
u
ua

)n

or M2 = Cun(ua−u)m, (6)

where C = M2
a
[ mua

m+n

]−m [ nua
m+n

]−n
. Here, ua refers to the magnetic axis, the free parameter M2

a

corresponds to the maximum value of M2 and m and n are related to the flow shear. In particular,

for the former (latter) of (6) M2 is peaked on- (off-)axis in connection with respective auxiliary

heating of tokamaks. Typical value of M2 for (large) tokamaks are of the order of 10−4 because

of the experimental scaling v∼ 10−1vs, where vs = (γP/ρ)1/2 is the sound velocity. An example

of the equilibria constructed is shown in Fig. 1.
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Figure 1: An ITER-like equilibrium with

parallel plasma flow in connection with

solution (3)-(4) with qa = 1.1 and βt =

0.01.

We now consider the important issue of the sta-

bility of (3)-(4), with respect to small linear MHD

perturbations by applying a sufficient condition (

[8]). This condition states that a general steady state

of a plasma of constant density and incompress-

ible flow parallel to B is linearly stable to small

three-dimensional perturbations if the flow is sub-

Alfvénic (M2 < 1) and A≥ 0, where A = A1 +A2 +

A3 + A4 as given by Eqs. (15)-(18) of [7]. Conse-

quently, we set ρ = 1. The quantity A1 is a desta-

bilizing contribution (A1 < 0) potentially related to

current driven modes while A2 relates to the varia-

tion of the magnetic field perpendicular to the mag-

netic surfaces. A3 and A4 are flow terms depending

on the magnitude and the shear of the flow (in con-

nection with the parameters M2
a , n and m for the
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present study). The quantity A was calculated analytically by Mathematica. It turns out that

the condition A ≥ 0 is satisfied only in a small region close to the boundary irrespective of

flow. As an example, the stability diagram showing the sign of A on the poloidal plane is

given in Fig. 2 for the peaked Mach-function (6) and the nearly maximum permissible value

M2
a = 10−2 (in connection with the non-negativeness of the pressure). The condition is satisfied

in the red-colored region. The diagram is nearly identical with the respective quasistatic one,

i.e. |∆A/Aqs| ≤ 10−3, where Aqs are the quasistatic values of A and ∆A their differences from

the stationary ones. Also, a similar result holds for the off-axis Mach function (6). Stability

diagrams for the terms A1, A2, A3 and A4 show that A2 is nearly everywhere stabilizing and of

the same order of magnitude as A1 but not large enough to overcome the destabilizing effect of

A1 . The flow term A3 is stabilizing over a large part of the plasma but A4 is destabilizing. Both

flow contributions are at least three orders of magnitude lower than A1. However taking into

account the fact that the condition is sufficient, the above results do not necessarily imply that

the equilibrium is unstable. Unlikely, the condition is satisfied in an appreciable plasma region

in the cases of the nonlinear cat-eyes [6] and counter-rotating-vortices equilibria [8]. This result

is in favor to the conjecture that the equilibrium nonlinearity may activate flow stabilization.
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Figure 2: Stability diagram showing the

sign of the quantity A for the peaked Mach

function (6) with M2
a = 10−2. In the red-

colored regions where A ≥ 0 the stability

condition is satisfied on the understand-

ing that the physically relevant part lies

within the plasma boundary.
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