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Since plasma flow is common in astrophysical systems and play a role in the transition to
improved confinement regimes of magnetic confinement devices there has been an increasing
interest to self consistent equilibria with flow. In the static regime the most known and widely
employed axisymmetric magnetohydrodynamic (MHD) analytic equilibrium is associated with
the Solovév solution of the Grad-Sfafranov (GS) equation [1]. This solution, however has a
limited number of free parameters which puts a restriction on the construction of realistic con-
figurations, particularly ITER-like ones with a single lower x-point. This drawback was recently
eliminated by an extension of the solution to contain arbitrary number of free parameters [2, 3].
Consequently, a variety of equilibria were constructed with boundary shaping pertinent to lab-
oratory fusion plasmas and desirable values of confinement figures of merit. Aim of the present
contribution is to extend further this Solovév solution to plasmas with incompressible flow par-
allel to the magnetic field on the basis of a generalized GS equation [Eq. (1) below]. Then,
ITER-like equilibria are constructed. A stability consideration is also made by means of a suf-
ficient condition for linear stability [8].

We start from the generalized GS equation for field aligned incompressible flows,
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together with the Bernoulli relation for the pressure,
P="P(u)—p—. 2

Here, (z,R,¢) are cylindrical coordinates with z corresponding to the axis of symmetry; the
function u(R,z) labels the magnetic surfaces; M(u) is the Mach function of the velocity with
respect to the Alfvén velocity; p(u) is the density and X (u) relates to the toroidal magnetic
field; for vanishing flow the surface function P;(u) coincides with the pressure; v is the velocity
modulus which can be expressed in terms of surface functions and R; and A* = RV - (V/R?).
Derivation of (1) and (2) in the general case of flows non-parallel to the magnetic field is pro-

vided in [4] and [5]. Note that (1) is identical in form with the usual (static) GS equation.
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Therefore, any analytic solution to the GS equation can be smoothly extended to the parallel
flow case. For convenience we will introduce dimensionless quantities by R = R/Ry, 7 = z/Ro,
ii=u/(BoR}), p=p/po. P=P/(B}/10);j=1J/(Bo/(UoRo)), where j is the current density, and
¥ = v/vao, where v4o = By //Hopo. The free parameters Rg and By are the radial coordinate of
the geometric center of the configuration and the vacuum toroidal magnetic field thereon. Then,
Eq. (1) remains identical in form for the tilted quantities by formally setting ty = 1. In the

following the tilde will be dropped on the understanding of non-dimensionality.
By making the Solovév-like linearizing ansatz P, = Pju and X?/(1 — M?) = XZ + 2Xju, the

resulting form of Eq. (1) admits the following solution which consists the basis of the present

study:
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Here, uy, is the solution of the homogeneous equation and u,, is a particular solution of the inho-
mogeneous equation. u;, consists of a symmetric in z part in connection with the coefficients c;
and an asymmetric in z part in connection with the coefficients d;. The construction of this so-
lution is based on an iterative algorithm which is explained in Sec. 2 of [3]. For d; = 0 the equi-
librium is up-down symmetric while an ITER-like equilibrium requires non symmetric terms.
Note that Xy = 1 because of the adopted normalization. It is emphasized that (3)-(4) hold for
arbitrary Mach functions and densities. By exploiting the free parameters we have constructed
ITER-like configurations with the following characteristics: major radius Ry = 6.2m, minor ra-
dius a = 2m, elongation k = 1.33, triangularity 6 = 0.33, safety factor on axis in the interval
1 < g, <2 and average toroidal beta 8; =~ 0.01. The parametric values were fixed, similar to [2],
by solving numerically the set of equations to follow in connection with the boundary shape
and confinement figures of merit. First, without prescribing completely the boundary curve
we impose u to vanish at four characteristic fixed points of the boundary, i.e. the inner point,
(Rin,z = 0), the outer point, (Ry,z = 0), the higher point, (R,,z,), and the (lower) x-point,
(Ry,zx): u(Rin,0) = u(Rou,0) = u(Ry,z,) = u(Ry,z,) =0. At the higher point and the x-point should
hold the relations %(Ru,zu) =0, % (Ry,2x) = g—’;(Rx, zx) = 0. Also, we require that the configu-
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ration is up-down symmetric near the plane z = 0: 3—;‘ (Rin,0) = %?(Rom, 0) = 0. Furthermore, it
can be shown that the curvature of the bounding curve at the inner, outer and higher points
should satisfy the relations [2] 92 ”(Rm,O) —N1 5% u (Rm,O), a SE2(Row,0) = —Nz%(R(,m,O),
g—;(Ru,zu) = —Nga—Z(Ru,zu), where Ny = s;<2) SNy = (1:;2‘) N3 =—Xcosa?, a =arcsin§.
In addition to the above boundary shaping equations we employ for the safety factor on axis and

the toroidal beta the relations:

X 02u 92\ /?
Qe = B T <8R2 812>

; )
R:RmZ:Za
where (R, z,) is the position of the magnetic axis, and f; = 1%' Regarding the flow, we
0
adopted the following alternative choices of M?:
M? =M <u > or M? = Cu(uy —u)", (6)

where C = M2 [ r’:i‘;l] - [%] " Here, u, refers to the magnetic axis, the free parameter Mg
corresponds to the maximum value of M? and m and n are related to the flow shear. In particular,
for the former (latter) of (6) M2 is peaked on- (off-)axis in connection with respective auxiliary
heating of tokamaks. Typical value of M? for (large) tokamaks are of the order of 10~* because
of the experimental scaling v ~ 10~ v, where vy = (YP/p) 1/2 is the sound velocity. An example
of the equilibria constructed is shown in Fig. 1.

We now consider the important issue of the sta-

bility of (3)-(4), with respect to small linear MHD MZ=10"?, n=2

perturbations by applying a sufficient condition ( i 7
[8]). This condition states that a general steady state “r 1

of a plasma of constant density and incompress- o, i
ible flow parallel to B is linearly stable to small i @ ]
three-dimensional perturbations if the flow is sub- O'O: \\/ : "

Alfvénic (M2 <1)andA >0, where A =A; +Ar+ o2l ]
A3z + Ay as given by Egs. (15)-(18) of [7]. Conse-
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quently, we set p = 1. The quantity A is a desta-

bilizing contribution (A; < 0) potentially related to 00 oz 04 06 o8 10 12

current driven modes while A, relates to the varia-

Fi 1: An ITER-lik libri th
tion of the magnetic field perpendicular to the mag- e " e equinbriim wi

parallel plasma flow in connection with
solution (3)-(4) with q, = 1.1 and B; =

0.01.

netic surfaces. A3 and A4 are flow terms depending
on the magnitude and the shear of the flow (in con-

nection with the parameters M2, n and m for the
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present study). The quantity A was calculated analytically by Mathematica. It turns out that
the condition A > 0 is satisfied only in a small region close to the boundary irrespective of
flow. As an example, the stability diagram showing the sign of A on the poloidal plane is
given in Fig. 2 for the peaked Mach-function (6) and the nearly maximum permissible value
M? = 1072 (in connection with the non-negativeness of the pressure). The condition is satisfied
in the red-colored region. The diagram is nearly identical with the respective quasistatic one,
i.e. [AA/Ay| < 1073, where A, are the quasistatic values of A and AA their differences from
the stationary ones. Also, a similar result holds for the off-axis Mach function (6). Stability
diagrams for the terms A, A>, Az and A4 show that A, is nearly everywhere stabilizing and of
the same order of magnitude as A but not large enough to overcome the destabilizing effect of
A; . The flow term Aj3 is stabilizing over a large part of the plasma but A4 is destabilizing. Both
flow contributions are at least three orders of magnitude lower than A;. However taking into
account the fact that the condition is sufficient, the above results do not necessarily imply that
the equilibrium is unstable. Unlikely, the condition is satisfied in an appreciable plasma region
in the cases of the nonlinear cat-eyes [6] and counter-rotating-vortices equilibria [8]. This result

is in favor to the conjecture that the equilibrium nonlinearity may activate flow stabilization.
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ing that the physically relevant part lies

within the plasma boundary.



