

Plasma parameters investigation for heterogeneous low-density load on high current generator

V.V. Aleksandrov¹, S.A. Dan'ko², I.N. Frolov¹, E.V. Grabovskij¹, A.N. Gritsuk¹, Y.G. Kalinin², E.D. Kazakov², V.D. Korolev², S.F. Medovshchikov¹, K.N. Mitrofanov¹, J.N. Lauhin¹, G.M. Olejnik¹, V.G. Pimenov⁴, E.A. Smirnova², G.N. Ustroev², I.V. Volobuyev³

¹*Russia Sientific Nationat Center «Troitsk institute of innovative and thermonuclear investigations», Troitsk, Russia*

²*National Research Center “Kurchatov Institute”, Moscow, Russia*

³*Physical institute of P.N. Lebedev of the Russian Academy of Sciences, Moscow, Russia*

⁴*N. D. Zelinsky Institute of Organic Chemistry, Moscow, Russia*

The goal of this work was to investigate plasma parameters for heterogeneous low-density load on high current generator Angara 5-1. The load consisted of two agar-agar columns and CD₂ neck between them. Low density load containing deuterium atoms are the most suitable for modeling fusion experiments for ICF purposes. The experiments were carried out on Angara-5-1 device (currents up to 3,5 MA with 120 ns increasing time).

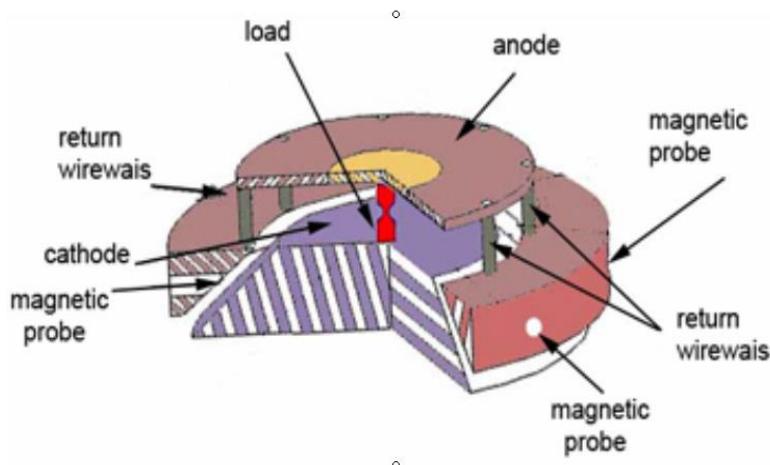


Fig.1 Target unit of Angara 5-1.

Experiments with currents 1,5-2MA have shown that the most suitable substance for a load is microporous deuterated polyethylene with small density (50-100 mg/cm³)[1]. Use composite profiled load which central part produced from microporous deuterated polyethylene[2], has allowed to transmit effectively energy from generator to a target.

The central part of load was produced from microporous deuterated polyethylene with density of 100mg/sm³ and diameter (1-1,3) mm. Spatial-time Z-pinch parameters were studied by

frame photography in soft x-ray spectral region with 5 ns exposure and optical streak camera with 2ns time resolution. The structure of high-temperature plasma in soft x-ray range was registered using time integrated three pinhole cameras with apertures of 50 mkm with different filters. Vacuum photoemission detectors were used for measuring x-ray radiation intensity. Also VUV and X-ray spectroscopy methods were used to estimate plasma parameters. Neutrons energy was measured by a time of flight method, for measuring of total neutron yield from the load neck the activation detector was used.

The neck luminance observed by streak-camera in visible range (slit is parallel to the load axis) began from about 30 ns. Diameter of neck was equal $\approx 1\text{ mm}$ during $\sim 100\text{ ns}$. Maximal plasma compression attending x-ray and neutron emission was observed on the current front (about 90 ns after the current beginning). Soft x-ray pulses with energy $E > 0.8\text{ keV}$ had 3-4 ns duration.

Fig.2 (a) Current and soft x-ray signals; (b) streak-camera image (slit is perpendicular to the load axis), (c) streak-camera image (slit is parallel to the load axis).

From $t \approx 110\text{ ns}$ plasma expansion in radial direction with $v \sim 4 \times 10^6\text{ cm/s}$ was observed.

On streak-camera photography with slit installed parallel to the load axis bright plasma formations was observed with a size of $\sim 100\text{ }\mu\text{m}$ and 4-8 ns duration were observed near t

≈ 120 ns.

In the same time plasma formations illuminating in soft x-ray range appeared in the load neck. Size of hot spots, registered by time integrated pinhole cameras was 200-300 microns for $E > 0.6$ keV energy region.

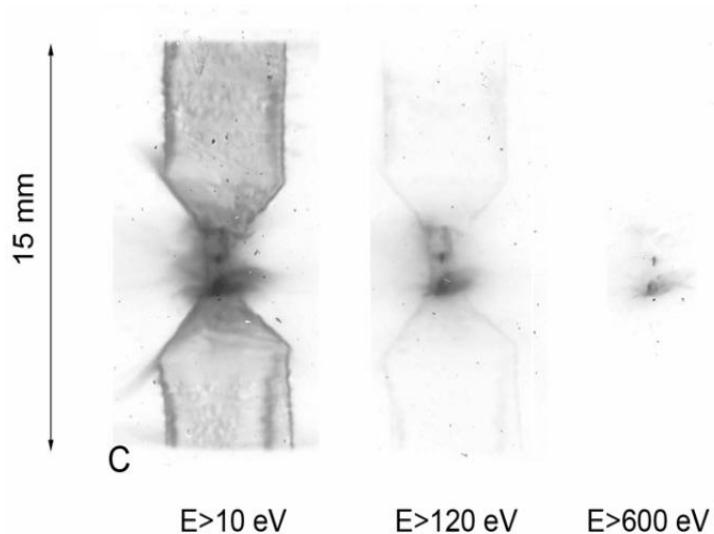


Fig.3 Time-integrated pin-hole camera images with different filters.

Also the plasma VUV spectra were registered by grazing incidence spectrograph. Lines of FeXVI – FeXVIII were observed. Electron temperature estimation made by method suggested in [3] ($\lambda_{\max} = 60$ Å) gave $Te \sim 300$ eV.

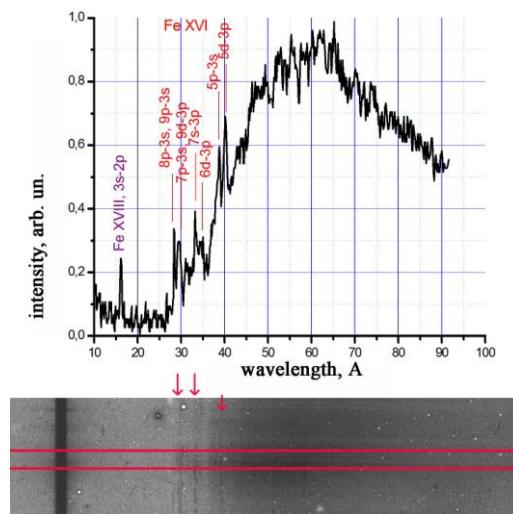


Fig.4 EUV plasma spectrum. Red lines correspond to the photometric measurements area.

The neutron yield depended on a load configuration. The maximal neutron yield was observed

in case of decreasing neck length and using the composite load with copper conical columns and achieved about 3×10^{10} . Average neutron energy measured by time of flight method in the radial direction (at angles 90^0 to a load axis) was close to 2,5 MeV.

Work supported by grant of Russian Federation President MK-2436.2011.2 and grants of Russian Foundation for Basic Research №12-02-00522-a, №10-02-00479-a.

References

1. J.L. Merkulev et. al., pre-print of P.N. Lebedev Physical Institute Russian Academy of Science, 44(2005).
2. A.A. Akunets, S.S. Anan'ev, Yu.L. Bakshaev et.al., The European Physical Journal D V.54(2), P. 499-503, 2009.
3. A. P. Shevelko, D. E. Bliss, E. D. Kazakov, et. al. Plasma Physics Reports 34 (11), 944-954 (2008).