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Introduction

Relativistic electron-positron plasmas have received natigimtion because they are relevant
in several environments, either of astrophysical or latsoyanature. Examples of this are ac-
cretion disks, models of early universe, ultra-intensengsslaboratory and tokamak plasmas,
pulsar magnetospheres or hypothetical quark stars. Sesfézats in these plasmas relate to
wave propagation, such as the proposed pulsar radio emigsizesses, bulk acceleration of
relativistic jets, quasar relativistic jets, or electnoositron pair annihilation into one-photon in
the presence of a strong magnetic field.

In several of the environments mentioned above, relativestects and temperature play an
important role, thus it is fundamental to understand waepagation modes in relativistic plas-
mas with temperature. Recently, a finite amplitude nonlisedution for relativistic electron-
positron plasmas has been found for relativistic tempegat[l], using an approach based on
the magnetofluid field unification formalism of Ref. [2].

In this work we will consider the parametric perturbatiohfmte amplitude circularly polar-
ized electromagnetic waves in a relativistic electronipms thermal plasma, which was solved
in Ref. [1]. Although simple, this analysis will allow us tasly in detail the effect of relativistic

temperatures on wave propagation, and its decay, in risliativiot plasmas.

Exact Solution
The relativistic plasma, for each specjge for electrons angb for positrons), obeys the fluid
equation
(%w,-.m) (fj)/jvj):r?]—jj(E—F%va)—ﬁDpj, (1)
wheren; is the density in the laboratory framg,is the relativistic factor, and; is a relativistic
thermal factor which is related to the enthalpy density aedethds on the thermodynamical

properties of the plasma. For instance, if the system falawWaxwell-Juttner equilibrium
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Figure 1: Dispersion relation of the pump wave, Eg. (3). Nalized wave numbey = koc/Q¢

vs. normalized frequencyy = wo/Q¢ for wy/Qc =1, 1/u = 0.01. (a)a =0. (b) a = 0.1,
a=02a=03.

distribution, thenf; = f(y;) = Ka(u;j)/Ka(l;), where gj = mjc?/ksTj; Kz and K3 are the
modified Bessel functions of order 2 and 3, respectively;land the Boltzmann constant.

As shown in [1] we can find an exact nonlinear transverse isoliid these equations, which
will be our zeroth order quantities in our approach, with &M fields written as

Eo(z,t) = Ep[sin(koz— apt)X—cogkoz— wpt)y] ,
Bo(z,t) = Bplcogkoz— apt)X+ sin(koz— ant)y] + Boz2.

We represent the transverse quantitieDas= Dy +iDy = D€z~ Thus, from Eq. (1) we

find the exact transverse velocity for each fluid as [1]

Voj = ( o ) nck T e = e (@)

fojYo; o — Qcj ) mcky ’ “mcky mc’
whereQcp = —Qce = Qc = eBy,/mcis the positron gyrofrequency angj = (1—v§;/c?) /2
is the relativistic factor.

The dispersion relation for circularly polarized EM waveztyoth order, is given by [1]

2_ 22— wz( o )7 3
@ - ; P\ foj Yoj o — Qc; ()

wherewy is the plasma frequency in the laboratory frame.

Parametric decays

Now, considering the finite amplitude transverse circylpdlarized wave propagating in our
electron-positron plasma system, with the dispersiortioglg3), we introduce perturbations
(represented by thé symbol in front of the variables) for every quantity in thendynical
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equation (1):

4 0
foﬁ (V015v+ 5Yjvoj) + fo(5vj : D) (yojvoj) +ybjﬁ (Vojcsfj)
qj

_ G 1 9 5v.By— —1-05p:
T m <5E+ CVO’58> T nc®ViBo~ i HOPI- “

wherevy; is the zeroth order transverse velocity, given by (@);is the zeroth order density in
the laboratory frame; anft} is the unperturbed part of the functidp
We separate Eq. (4) in a longitudinal and transverse parvanassume that every longitudi-

nal and transverse perturbation has the form
D, = Re[ﬁei(szwt)} 1 <Dei(szwt) n [")*efi(k*sz*t)> ’ 5)
2
oD = d+ei(k+sz+t) + d,ei(k‘sz‘t) : (6)

respectively, wher&, = kg+k, k- = ko —K*, w; = ap+ w andw_ = apy — w*. Now we get
a system of equations for the quantities= (V.e, Vi p, Ve, V-, Ve, Vp, b4, b7 ). The dispersion
relation can be found through the determinant of the setddrby these equation&x = 0, so
the dispersion relation will be,

F(k,w) =detA) = 0. (7)

We study the dispersion relation (7) for various pump wadeswe see in Fig. 1, we have
three cases: Case |: the pump wave is on the Alfvén branch. Cdke pump wave is on the
electromagnetic branch. Case Ill: the pump wave is in the atmus dispersion zone on the

Alfvén branch. For each case, we chogge- 1, yp = 1, andyp = 4.632, respectively.

In Fig. 2, we shown the dispersion relation (7) for the cased . We can see from Fig. 2
that there are several possible crossings between sdutiotihe dispersion relation. At these
crossings, complex solutions can appear wheg 0. Since the polynomial being solved has
real coefficients, these solutions always occur as complexigate pairs, thus one of them has a
positive imaginary frequency. Therefore, the disappezanreal solutions whem # 0 implies
the presence of unstable waves, corresponding to the paramdecays of the pump wave.
When we turn the pump wave on by consideringr 0. In Fig. 2,a = 0.1, we notice that some
crossings become gaps. This means that at these crossirys/e/eomplex solutions whose
real parts are indicated as dotted lines, while the realtisolsi correspond to the continuous
lines. Hence, we now have instabilities, indicating waveptng.

Now in Fig. 3 we show the results for case Il (anomalous disipe,dw/dk < 0 for w > 0).

It is interesting to note the instability that occurs forgay values, close tx ~ 0, due to the

(p—, p+) coupling, which can be considered as an electromagnetiaulaidohal instability.
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Figure 2: Solution of the dispersion relation Eq. (7). Nolimead wave numbey = kc/Qc vs.
normalized frequency = w/Q for yo = 1, wp/Qc = 1, 1/u = 0.01. The dotted lines corre-

spond to complex conjugate pair solutions.

Figure 3: Dispersion relation Eq. (7). Normalized wave nemis. normalized frequency for
Yo =4.632,wp/Qc =1, 1/ = 0.01. Left: a = 0. Right:a = 0.04. Dotted lines represent the

real part of the complex solution.
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