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Introduction

The self-modulation of a relativistic nonlinear circularly (and linearly) polarized electromag-

netic wave in an electron-positron plasma was first investigated by Chian and Kennel [1] in

the cold unmagnetized case. A large number of papers have improved the original model by

Chian and Kennel [1], including the existence of Alfvén vortices in the presence of a strong

magnetic field, the influence of a strong magnetic field and ions, and the effects of relativistic

temperatures and phonon damping.

In this work we follow this research subject, by studying theself-modulation of a nonlin-

ear circularly polarized electromagnetic wave in a weakly magnetized relativistic hot electron-

positron plasma. [2]

Relativistic plasmas with a finite temperature

It is possible to formulate a theory for hot relativistic plasmas in a covariant form [3] where

the fluid and the electromagnetic fields are unified into a single field. The plasma dynamics is

given by Maxwell’s equations, the continuity and the motionequations for each fluid:
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∂ t

(
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)
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where~v j ,γ j , q j , p j andn j are the velocity, relativistic Lorentz factor, charge, pressure and rest-

frame number density of each fluid, respectively,m is the electron mass,c is the speed of light,

and~E and~B are the electric and magnetic fields.
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The f j ≡ f (Tj) function is given byf (T) = K3(mc2/kBT)/K2(mc2/kBT), whereTj is the

temperature,K3(x) andK2(x) are modified Bessel functions of order 3 and 2, respectively, and

kB is the Boltzmann constant. We use the subindexj = e for the electron fluid andj = p for the

positron fluid.

Circularly polarized electromagnetic wave

A circularly polarized electromagnetic wave is an exact solution of the fluid equations for

constant, relativistic temperatures. [4, 5] We consider a circularly polarized electromagnetic

wave which propagates in a relativistic electron-positronplasma, along an ambient uniform

magnetic fieldB0ẑ, that is~A = a0[cos(kz−ωt)x̂+sin(kz−ωt)ŷ], whereω is the frequency and

k is the wave number.

This wave satisfies the dispersion relation [4, 5]

ω2−c2k2

ω ω2
p

=
γe

feγeω +Ωc
+

γp

fpγpω−Ωc
, (3)

whereωp = (4πe2n0/m)1/2 andΩc = eB0/(mc) are the plasma and cyclotron frequencies.

NLS equation for wave amplitude

We now seek a solution in the weakly magnetized relativisticplasma limit (ω ≫Ωc). At the

orderΩ2
c/ω2, for a plasma in thermal equilibrium (fe = fp = f ), it can be shown that the vector

potential satisfies the wave equation:

∂ 2~A
∂ t2 −c2∂ 2~A

∂z2 +
2ω2

p
~A

f

[
1+

Ω2
c f 2

ω2( f 2 +λA2)2

]
= 0, (4)

whereλ = e2/(m2c4). This equation represents the nonlinear propagation of thecircularly po-

larized electromagnetic wave packet.

In order to study the modulational instability, we now consider a space-dependent wave am-

plitude,~A = a(z, t)[cos(ωt)x̂+ sin(ωt)ŷ]. Then, for a slowly time-varying modulation∂ 2
t a≪

ω2a in Eq. (4), the small-amplitude limitf 2 ≫ λ |a|2, and with the further change of variables

a→ aexp(iR(ω, |a0|2)t), the following nonlinear Schrödinger equation is obtained:

i
∂a
∂ t

+P(ω)
∂ 2a
∂z2 +Q(ω)(|a|2−|a0|2)a = 0, (5)

with
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This nonlinear Schrödinger equation for the wave amplitudeincludes thermal effects intro-

duced through thef j factor, thus improving on previous results [1]. Also noticethatP(ω)Q(ω)>

0, thus the wave is subject to the modulational instability.
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Modulational instability

Writing a =
√

ρ(z, t)exp[iσ(z, t)] in (5), yields

∂ρ
∂ t

+2P
∂
∂z

(
ρ
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)
= 0, (7)
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]

= Q(ρ−ρ0) , (8)

whereρ0 = |a0|2.

Linearizing with respect to the uniform solution,

ρ = ρ0 +ρ1eikLz−iωLt , σ = σ1eikLz−iωLt ,

whereρ1 ≪ ρ0 andσ1 ≪ σ0, we obtain the dispersion relation for the low-frequency modula-

tion. Solving forωL shows that the maximum growth rate isΓ = Qρ0, and that the instability is

suppressed at large temperatures,f ≈ 4kBT/mc2, Γ≃ T−5.

When the modulation grows, the instability evolves into a nonlinear stationary state balancing

the dispersion with the nonlinearity. To study these nonlinear states, we focus on Eq. (5) for

a(z, t).

Depending on the initial conditions, the solution can be periodic wave trains (Fig. 2), or

localized solutions (Fig. 3):

a(z, t)
a0

= Ψ
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V
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2
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)
t . (9)

For τ = 1 andΨ′(0) = 0, we obtain a localized solitary wave solutionΨ = sech(ξ ), so that

the solution of (9) fora is

a(z, t) = a0sech




√
Qa2

0

2P
ξ


eiη . (10)

The soliton solution gets wider inξn as we increase the temperature, reducing the effect of

the nonlinear corrections. Eventually the localized solution becomes effectively a light mode

with uniform amplitude for very large temperatures. Similarly, the solitary wave also becomes

effectively a uniform solution for large wavenumbers.
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Fig. 2. (a) Solutions forΨ(0) = 1 andΨ′(0) = 0. The constant solution is forτ = 0,

whereas a solitary wave solution exists forτ = 1. For values 0< τ < 1 we find periodic

wave trains. (b) Solutions forΨ(0) = 1 andΨ′(0) = 0.5. For these values there are

only periodic wave trains whose amplitude becomes bigger asthe value ofτ increases.

HaL

-40
-20

0
20

40

Ξn
0.0

0.2

0.4

kBT
0.0

0.5

1.0

Ρ�Ρ0

HbL

-40
-20

0
20

40

Ξn
0

5

10

y
0.0

0.5

1.0

Ρ�Ρ0

Fig. 3. (a) The soliton solutionρ in terms of−40≤ ξn≤ 40 and 0≤ kBT ≤ 0.5 MeV

for y = 1. (b) Its behavior with respect to−40≤ ξn≤ 40 and 0≤ y≤ 10 for tempera-

turekBT = 0.05 MeV. We have takenα = 0.1.
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