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I. It is generally recognized that nonlinear interaction of short-scale drift-type fluctuations in
turbulent plasma can spontaneously generate and sustain the large-scale strongly anisotropic
secondary flows with additional symmetry, so called zonal flows and streamers that play an
important role in different areas of plasma research. Generation of such flows is commonly
attributed to the effect of Reynolds stress produced by small scale fluctuations, using the free
energy stored in density and temperature gradients. The mechanism behind can be connected
to the well known inverse cascade guaranteed in two (and quasi-two)-dimensional fluids by
the conservation of energy and enstrophy. On the other hand, transport and amplification
properties of large-scale magnetic fields are widely investigated because of their importance
in different physical phenomena. One impressive effect of large, strong magnetic fields is the
release of high-energy bursts in solar flares. It is interesting to combine the phenomena of
excitation of large scale structures and strong quasi-steady magnetic fields, and thus develop a
nonlinear theory capable of describing the generation of such large-scale magnetic fields by
small scale turbulence and their mutual interactions.

Here we investigate the generation of large-scale magnetic fields in magnetic electron drift
(MED) mode turbulence. The small scale turbulent fluctuations are drift type modes excited
in a non-uniform plasma in the frequency range between the electron and ion plasma
frequencies and are fed by density and temperature gradients through the first order baroclinic
vector. These modes are of interest in, e.g., laser fusion experiments, where they are thought
to be responsible for the very strong self-generated magnetic fields observed since 1970s.
Moreover, phenomena occurring in such time scales may even be more important as a source
of secondary magnetic field structures related, for example, to the reconnection of magnetic
field lines. To understand the nonlinear dynamics of these modes, we employ a self-consistent
spectral two field model. Note that this model does not deal with flows in the original sense,
since it is not flow of the particles, but rather magnetic structures that are elongated along one
direction and periodic with a long wavelength along the other direction as well. Following this
similarity, we call the corresponding large-scale structures "zonal magnetic fields, or
magnetic streamers™ as it has been adopted in the literature. With this model, we focus on the
generation of large scale magnetic fields, stability of these structures and its further nonlinear
evolution along with simulation study of the MED mode turbulence.

I1. We consider a nonuniform unmagnetized plasma, and fluctuations on a space scale much
smaller than that of the equilibrium density and temperature inhomogeneities, which are taken
to be in the x-direction. The time scale is faster than the ion and slower than the electron
plasma frequency, and hence we consider an unpolarized electron fluid and immobile ions.
Then, starting from the momentum equation together with Maxwell's equations and energy
equation, the model equations for MED mode turbulence can be reduced to a pair of coupled

non-linear equations for magnetic field, B(x,y)z say, and perturbed electron temperature T
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Here o and pSare coefficients proportional to the inverse length scales of the density and
temperature inhomogeneities and A=c/w, Iis the electron skin depth, the curl brackets

denote the Poisson brackets and are defined as{c,d}=(VcxVd)-z. Linear analysis of

Eqgs.(1) shows that there is purely growing solutions for «f <0, so that the underlying MED

mode turbulence is driven by gradients of density and temperature. Egs.(1) have two
conserved quantities corresponding to that of the energy and enstrophy integrals. By analysis
of the spectral properties of the MED modes in the weakly nonlinear approximation, one can
show that the presence of these two integrals necessitates the double energy cascade as the
key property of the MED mode turbulence.

The nonlinear transfer of wave energy from small scales towards the long wave length
region (the so-called ‘‘inverse cascade’’) is a cause of spontaneous generation and
sustainment of large-scale structures. So, the MED mode turbulence is capable of generating
the large scale wing of the wave spectrum. During this flow generation, thermodynamic free
energy stored in gradients is converted into Kinetic energy of magnetic flows by fluctuation
induced Reynolds stress and thus these gradients constitute the energy source for the magnetic
structures. To prove this statement, we use the ansatz of multi-scale expansion between the
spatio-temporal scales of the flows and those of micro-turbulence. The magnetic field and
temperature are then decomposed into a large-scale slowly varying component and a small
scale component. It is important to note that the conserved energy integral contains both
small-and large-scale components. It means that the whole wave spectrum and the interaction
between different regions of the spectrum have to be included into considerations. To describe
this interaction we will separate the whole turbulent spectrum into two parts, one describing
large-scale structures with a wave vector denoted by q and the other describing small-scale

turbulence with a wave vector denoted by k . We therefore have the relation |q| <<|k|. Note

that the both g and k describe the same spectrum but different parts of it. Using these
decompositions yields the set of g-th Fourier components of Egs.(1). It is seen from these
equations that a small scale turbulence can indeed drive large-scale structures characterized
by B and T,via the magnetic Reynolds stress kakyBkBik . In order to describe the nonlinear

evolution of the total wave spectrum in a self-consistent way, we have to determine the
“loop-back”, i.e. the response of small scales to large-scale structures changes. To this end, it
is relevant to consider the evolution of MED mode micro-turbulence in a medium which is
slowly modulated by large scale structures. This can be conveniently done using a wave
kinetic equation for the generalized wave action density N, (r,t) in r—Kk space. An

appropriate action-like invariant takes the form N, =4a(1+k*2*)|B[ /5. The set of g-th

Fourier components of Egs.(1) and corresponding wave kinetic equation constitute the basic
system used to describe the nonlinear evolution of the MED mode turbulence in a
self-consistent way.
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I11. We are looking for a general criterion for the generation of large scale fields depending on
the form of the wave spectrum. We will focus our attention on the zonal magnetic fields, i.e.
structures elongated perpendicular to the direction of plasma inhomogeneity. Introducing the

large scale “vector”B_E(e/me)(Bq— ﬁa’qu)exp(iqr) and performing some calculations
with equations (1) yields the equation of motion for B. To solve this equation, we first

replace the magnetic field Fourier component with the wave spectrum using the definition of
the wave action density N, . Then we decompose N, into an equilibrium and perturbed part,

N, =N, +N,, and assumeN, ~exp(-iQt+ipr). So that the equation of motion for B finally
becomes

' -ie" =K q’k, (N, /ok MR (€, p)d’k )
here M, and K_are real coefficients. The response function R(Q,p)= i/(Q— pv, +in)
where »" is small and positive, v, is the group velocity of the MED mode. The strongest

interaction between the small scale turbulence (medium) presented by its wave spectrumN,,
and the zonal fields can expected when the reaction of the medium (Q in the response
function) is in resonance with the perturbation (represented by v, in the response function),
that is, when Q= pv and thus R(Q,p)~1/7/N >0. Because of strong interaction, we can

assume o' =o0. The corresponding regime of zonal field generation is called “kinetic”
because of its obvious similarities with Landau damping in the kinetic wave theory. The result

of these considerations is the criterion for instability »* >0« k (oN,/ék,)<0. This result is

opposite to the condition for the Langmuir turbulence, where the slope of the velocity
distribution function must be positive for positive velocities.

We derive rather general criterion for excitation of large scale magnetic fields by small
scale turbulence, which depends on the equilibrium spectrum distribution. For explicit
integration of the equation (2), one has to consider a specific form of the equilibrium wave

spectrum N, . Assuming a monochromatic wave packet, N! =N s(k-k,), and performing the
integration by parts yield the dispersion relation for ZF

(2-av,)" = KN, (av, /K, )/ (, o ©)

So that, requirement for the instability is No(avg/akx)/(koy«/aﬂ) < 0. Note that this condition
is similar to the well known Lighthill criterion for the modulational instability.
Y. The long term dynamics of the large scale magnetic fields generated and strengthened

through instabilities can be determined by looking for the time evolution equation of the large
scale “flow velocity” v, . To derive this equation, we will decompose the wave spectrum into

equilibrium, resonant and nonresonant first order and nonresonant second order perturbed part,
N, =N, +N +N® +N®. Now performing calculations of resonant and nonresonant parts and

summing up corresponding results yields the evolution equation for “flow velocity” v,

80V, =Ddlv, +udlv, +bd’V’ (4)
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Here D,u,and bare some integral coefficients which depend on the equilibrium spectrum
distribution. We now look for the stationary solutions of Eq.(4), propagating with constant
velocity u,, in the x direction, v, (x—u, t). The simplest stationary solution for Eq.(4) with the

imposed boundary conditions corresponding to a solitary wave with different asymptotic
values, i.e. a “switching” or “kink” soliton, is given by

2v, ={v,+v, +(v,-v,)tanh[b(v, -v,)x/2D]}

This solution describes the transient region between two different values of the flow v, to v,.

We note that it is different from the stationary vortex solution found earlier. Thus, cooperative
effects of the wave motion, steepening and instability give a possibility of forming stationary
or moving kink solitons in between the surfaces of two different flow velocities.

Y. A simulation study of the Egs. (1) for different sets of parameters has been performed. The
simulation code is based on a pseudospectral method to resolve derivatives in space with
periodic boundary conditions, with random fluctuations as initial conditions.
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Figure 1: Linearly unstable regime. Top panels: Magnetic field and temperature fluctuations
Bottom panels: Zonon and streamer energy spectra of the magnetic field.

In the unstable regime (af <0), displayed in Fig. 1, we could observe magnetic field
generation and the formation of large scale magnetic structures, accompanied by small-scale
turbulence visible in the temperature fluctuations. The energy spectra are non-Kolmogorov
and concentrated to streamers at small wave numbers.

In the linearly stable regime (o > 0), we observe small-scale turbulence and the formation

of zero-frequency zonal flows (zonons). The energy spectra are strongly anisotropic with
magnetic wave energy concentrated at zonons.



