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I. It is generally recognized that nonlinear interaction of short-scale drift-type fluctuations in 
turbulent plasma can spontaneously generate and sustain the large-scale strongly anisotropic 
secondary flows with additional symmetry, so called zonal flows and streamers that play an 
important role in different areas of plasma research. Generation of such flows is commonly 
attributed to the effect of Reynolds stress produced by small scale fluctuations, using the free 
energy stored in density and temperature gradients. The mechanism behind can be connected 
to the well known inverse cascade guaranteed in two (and quasi-two)-dimensional fluids by 
the conservation of energy and enstrophy. On the other hand, transport and amplification 
properties of large-scale magnetic fields are widely investigated because of their importance 
in different physical phenomena. One impressive effect of large, strong magnetic fields is the 
release of high-energy bursts in solar flares. It is interesting to combine the phenomena of 
excitation of large scale structures and strong quasi-steady magnetic fields, and thus develop a 
nonlinear theory capable of describing the generation of such large-scale magnetic fields by 
small scale turbulence and their mutual interactions.  
   Here we investigate the generation of large-scale magnetic fields in magnetic electron drift 
(MED) mode turbulence. The small scale turbulent fluctuations are drift type modes excited 
in a non-uniform plasma in the frequency range between the electron and ion plasma 
frequencies and are fed by density and temperature gradients through the first order baroclinic 
vector. These modes are of interest in, e.g., laser fusion experiments, where they are thought 
to be responsible for the very strong self-generated magnetic fields observed since 1970s. 
Moreover, phenomena occurring in such time scales may even be more important as a source 
of secondary magnetic field structures related, for example, to the reconnection of magnetic 
field lines. To understand the nonlinear dynamics of these modes, we employ a self-consistent 
spectral two field model. Note that this model does not deal with flows in the original sense, 
since it is not flow of the particles, but rather magnetic structures that are elongated along one 
direction and periodic with a long wavelength along the other direction as well. Following this 
similarity, we call the corresponding large-scale structures "zonal magnetic fields, or 
magnetic streamers" as it has been adopted in the literature. With this model, we focus on the 
generation of large scale magnetic fields, stability of these structures and its further nonlinear 
evolution along with simulation study of the MED mode turbulence. 
II. We consider a nonuniform unmagnetized plasma, and fluctuations on a space scale much 
smaller than that of the equilibrium density and temperature inhomogeneities, which are taken 
to be in the x-direction. The time scale is faster than the ion and slower than the electron 
plasma frequency, and hence we consider an unpolarized electron fluid and immobile ions. 
Then,  starting from the momentum equation together with Maxwell's equations and energy 
equation, the model equations for MED mode turbulence can be reduced to a pair of coupled 
non-linear equations for magnetic field, ( ),B x y z say, and perturbed electron temperature  T  
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Here α and β are coefficients proportional to the inverse length scales of the density and 
temperature inhomogeneities and / pecλ ω=  is the electron skin depth, the curl brackets 

denote the Poisson brackets and are defined as { } ( ),c d c d≡ ∇ ×∇ ⋅ z

0

. Linear analysis of 

Eqs.(1) shows that there is purely growing solutions for αβ < , so that the underlying MED 
mode turbulence is driven by gradients of density and temperature. Eqs.(1) have two 
conserved quantities corresponding to that of the energy and enstrophy integrals. By analysis 
of the spectral properties of the MED modes in the weakly nonlinear approximation, one can 
show that the presence of these two integrals necessitates the double energy cascade as the 
key property of the MED mode turbulence.  
   The nonlinear transfer of wave energy from small scales towards the long wave length 
region (the so-called ‘‘inverse cascade’’) is a cause of spontaneous generation and 
sustainment of large-scale structures. So, the MED mode turbulence is capable of generating 
the large scale wing of the wave spectrum. During this flow generation, thermodynamic free 
energy stored in gradients is converted into kinetic energy of magnetic flows by fluctuation 
induced Reynolds stress and thus these gradients constitute the energy source for the magnetic 
structures. To prove this statement, we use the ansatz of multi-scale expansion between the 
spatio-temporal scales of the flows and those of micro-turbulence. The magnetic field and 
temperature are then decomposed into a large-scale slowly varying component and a small 
scale component. It is important to note that the conserved energy integral contains both 
small-and large-scale components. It means that the whole wave spectrum and the interaction 
between different regions of the spectrum have to be included into considerations. To describe 
this interaction we will separate the whole turbulent spectrum into two parts, one describing 
large-scale structures with a wave vector denoted by  and the other describing small-scale 

turbulence with a wave vector denoted by . We therefore have the relation 

q

k <<q k . Note 

that the both q  and k describe the same spectrum but different parts of it. Using these 
decompositions yields the set of q-th Fourier components of Eqs.(1). It is seen from these 
equations that a small scale turbulence can indeed drive large-scale structures characterized 
by and q via the magnetic Reynolds stress qB T

x y k
B

k
k k B

−∑ . In order to describe the nonlinear 

evolution of the total wave spectrum in a self-consistent way, we have to determine the 
“loop-back”, i.e. the response of small scales to large-scale structures changes. To this end, it 
is relevant to consider the evolution of MED mode micro-turbulence in a medium which is 
slowly modulated by large scale structures. This can be conveniently done using a wave 
kinetic equation for the generalized wave action density ( ),k rN t in space. An 

appropriate action-like invariant takes the form 

−r k

( ) 22 24 1 /k BkN kα λ= + β . The set of q-th 

Fourier components of Eqs.(1) and corresponding wave kinetic equation constitute the basic 
system used to describe the nonlinear evolution of the MED mode turbulence in a 
self-consistent way. 
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III. We are looking for a general criterion for the generation of large scale fields depending on 
the form of the wave spectrum. We will focus our attention on the zonal magnetic fields, i.e. 
structures elongated perpendicular to the direction of plasma inhomogeneity. Introducing the 

large scale “vector” ( ) ( ) ( )2 1/ 4 expB e m B T iλ βα −≡ − qr  and performing some calculations 

with equations (1) y

q q

ields the equation of motion for B . To solve this equation, we first 
replace the magnetic field Fourier component with the wave spectrum using the definition of 
the wave action density kN . Then we decompose kN into an equilibrium and perturbed part, 

0k kN N N= + � , and assume ( )expk i t i− Ω + pr∼ . So that the equation of motion for N B  finally 

 
becomes 

( ) ( )2 2 2

0 ,zf zf

q x x x ki K q k N k M R p dγ − Ω = − ∂ ∂ Ω∫ k    (2) 

here ( ) ( )and qK are real coefficients. The response function , v NR p i p ig γΩ = Ω − +  kM

where N γ  is all and positive, vsm g  is the group velocity o rongest 

all scale turbulence (medium) presented by its wave spectrum N , 
and the zonal fields can expected when the reaction of the medium (Ω  in the response 
function) is in resonance with the perturbation (represented by v

f the MED mode. The st

interaction between the sm 0

g  in the response function), 

that is, when v gpΩ � and thus ( ), 1 0NR p γΩ >∼  Because of strong interaction, we can 

0
zf

Ω � . The corresponding regime of zonal field generation is called “kinetic” 
because of its obvious similarities with Landau damping in the kinetic wave theory. The result 
of these considerations is the criterion for instability 

.

assume 

( )00 0zf

x xk N kγ > ⇔ ∂ ∂ < .  This result is 
opposite to the condition for the Langmui
distribution function must be positive for positive velocities.  
   We derive rather general criterion for excitat

r turbulence, where the slope of the velocity 

ion of large scale magnetic fields by small 
scale turbulence, which depends on the equilibrium spectrum distribution. For explicit 
integration of the equation (2), one has to consider a specific form of the equilibrium wave 
spectrum 0N . Assuming a monochromatic wave packet, ( )0 0 0

kN N δ= −k k , and performing the 
integration by parts yield the dispersion relat

( )
ion for ZF 
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So that, requirement for the instability is 

Ω − =

( ) ( )0 0v 0g x yN k k αβ∂ ∂ < . Note that this condition 

odulational

nd strengthened 

is similar to the well known Lighthill criterion for the m  instability.  

IY.  The long term dynamics of the large scale magnetic fields generated a
through instabilities can be determined by looking for the time evolution equation of the large 
scale “flow velocity” fv . To derive this equation, we will decompose the wave spectrum into 

equilibrium, resonant and nonresonant first order and nonresonant second order perturbed part, 
( ) ( )1 2

0

r

k k k kN N N N N= + + +� � � . Now performing calculations of resonant and nonresonant parts and 

summing up corresponding results yields the evolution equation for “flow velocity” fv  

                      3 2 2 2v v v vt x f x f x f x fD u b∂ ∂ = ∂ + ∂ + ∂      (4  ) 
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Here , ,D u and icients which depend on the equilibrium s are some integral coeff pectrum 
 now look for the stationary solutions of Eq.(4), propagating with constant 
b

edistribution. W
ty 0veloci xu in the x  direction, ( )0v f xx u t− . The simplest stationary solution for Eq.(4) with the 

imposed boundary conditions corresponding to a solitary wave with different asymptotic 
values, i.e. a “switching” or “kink” soliton, is given by  

    ( ) ( )[ ]{ }1 2 1 2 12v v v v v tanh vf b= + + − −  2v 2x D

 describes the transient region between two different values of the flow o  
We note that it is different from the stationary vortex solution found earlier. Thus, cooperative 

rmed. The 
simulation code is based on a pseudospectral method to resolve derivatives in space with 

                      

This solution 1v t  2v .

effects of the wave motion, steepening and instability give a possibility of forming stationary 
or moving kink solitons in between the surfaces of two different flow velocities.     

Y. A simulation study of the Eqs. (1) for different sets of parameters has been perfo

periodic boundary conditions, with random fluctuations as initial conditions.  

 
 
 
 

 
 
Figure 1: Linearly unstable regime. Top panels: Magnetic field and temperature fluctuations  
Bottom panels:  Zonon and streamer energy spectra of the magnetic field. 

 
In the unstable regime ( 0αβ < ), displayed in Fig. 1, we could observe magnetic field 
generation and the formation of large scale magnetic structures, accompanied by small-scale 

emperaturbulence visible in the t ture fluctuations. The energy spectra are non-Kolmogorov 
and concentrated to streamers at small wave numbers.  
In the linearly stable regime ( 0αβ > ), we observe small-scale turbulence and the formation 
of zero-frequency zonal flows (zonons). The energy spectra are strongly anisotropic with 
magnetic wave energy concentrated at zonons.                         
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