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The complex interaction between large-scale mean ExB flows, meso-scale zonal flows and
micro-scale drift turbulence, leading to anomalous transport, is an important area of
experimental and theoretical research in magnetically confined plasmas.

In this paper the global electrostatic gyrokinetic (GK) particle-in-cell simulation, performed
by Elmfire code [1] is for the first time validated against the turbulence and confinement data
obtained in low-current (/, ~ 19 kA) hydrogen ohmic discharge at FT-2 limiter tokamak
(Ro=55cm, a=7.9cm, By~23T, effective collisionality: v’ ~10-25, main impurity:
oxygen O™, Z.r~ 3.1, energy confinement time: 1 ms). The Elmfire code simulates the total
distribution function (full-f) of drift kinetic electrons and an arbitrary selection of GK plasma
ions in the region 0.25 <r/a <1 with a grid of 120, 150, 8 cells in radial (), poloidal (&),
toroidal (¢) directions (each containing 3000 particles of each specie providing a random
noise level <1%). The 360 us interval is computed with a time step of 30 ns. The code’s
solutions concerning collisions’ modeling and ¢- angular momentum conserving are
described in [2, 3]. The main plasma energy losses are by heat conduction/convection and
impurity radiation and ionization. Electrons are cooled according to the experimental fit of the
power density of the impurity radiation and ionization. Ohmic heating is inherent by a
feedback in the radially uniform loop voltage (2.25 V for the steady state) ramping up and
sustaining the total current /,. The model successfully preventing particle accumulation near
the outer boundary and capturing the most prominent features of the recycling process is used.
Profiles of the electron density n. and temperature 7. (provided by Thomson scattering), the
ion temperature 7; (measured at »/a < 0.5 by charge-exchange diagnostic and at 7/a > 0.6 by

visible light spectroscopy) used as the simulation input and steady state profiles (for the
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67 (cm) (180..360 us) with a turbulence switched on. and the experimental
estimations of the effective electron and ion heat conductivity obtained from the primary
experimental profiles using ASTRA modeling [4] for the former one and energy balance in
the ion channel (IEB) for the latter were achieved (Fig. 1) with exceptions at the outer
boundary. The partial agreement of the full-f modeling results achieved at the macro-level
was strengthened at the micro and intermediate turbulent scale level by comparisons to
Doppler Reflectometry (DR) [5] and Doppler Enhanced Scattering (ES) [5, 6] microwave
diagnostic measurements of fluctuation spectra and perpendicular rotation. Both diagnostics
utilize electromagnetic wave back scattering (BS) (for DR: 26-37 GHz, O-mode in the cutoff
vicinity: r/a ~ 0.8-0.9, with resolution 67 ~ 0.5 cm; for ES: 54-66 GHz, X-mode at the upper
hybrid resonance (UHR) layer: 7/a ~ 0.65-0.87, with dr ~ 0.1 cm) off low frequency small-

scale density fluctuations with 8- wave numbers for DR: kg ~ 3-5 cm’™; for ES: 15-30 cm™.
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Fig. 2. Spectra comparison: DR (blue) and synthesized from Elmfire simulations with impurities (magenta).

Comparisons between the experimental DR frequency (f') spectra at several r-positions and

spectra reconstructed using the density fluctuations on(r,8,f) simulated by the code [7]
through the relation S(f)=[" joz” jO’W(r, 0)Sn(r,0,t)exp(—i2x ft)rdrd @dt where W(r,6) is a

complex DR weighting function, used to select the spatial and wave number (k) range of
turbulence, are shown in Fig. 2, where the statistical averages on the saturated nonlinear state
are performed over 64 us to obtain similar statistics. Micro-scale turbulence f-spectra
measured by the DR diagnostic can be reconstructed and the f-shift, the width and even the

shape of the experimental spectra are well reproduced by the synthetic diagnostic indicating
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frequency of 30-50 kHz are attributed to the geodesic acoustic mode (GAM). Such an

(Fig. 4a). These giant FE, oscillations at a

attribution is supported by DR and ES measurements revealing similar oscillations in the Vy
meso-scale dynamics. By applying the sliding Fourier Transform (FT) procedure (or the o-
phase method [10]) to quadrature BS signals one can generate fp(f) time sequences which can
then be Fourier analyzed to give the E, spectrum and reveal the GAM like spectral lines. In
Fig. 3c the dominant E, oscillation frequency dependence on the r-position obtained by
Elmfire simulations with (magenta) and without (green) impurities and BS measurements are
compared with the analytical prediction [11] for the GAM frequency (solid and dashed
curves) in which the role of impurities is accounted for 7; = 0.07n.. When the O™® component
is included in the simulations a much better match to the analytical estimation obtained for
relaxed profiles as well as to the ES and DR measurements is found. Due to insufficient 7-
resolution the contrast of the GAM spectral peak is not high (<2) for the DR measurements

complicating the Vy meso-scale dynamics investigation against the background wideband
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studied in more detail using the ES diagnostic

PDF . .
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(~4). The E.(f) time trace obtained with the ES
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Fig. 3. PDEs of the £, fluctuations. with a FT window of 64 points and a sampling period of
50 ns, corresponding to a Nyquist frequency of fy = 156.25 kHz. For one on one comparison
between the simulated and experimental £, fluctuations, frequencies above the fy are removed
from the simulated E,(f) by a low pass filter (LPF) (the dotted line in Fig. 4a). The probability
distribution functions (PDFs) of 8E,(f) = E,(f) - < E,>, where < E,> is the time averaged mean
(at » ~ 5.65 cm) are shown to be similar and well approximated by normal law (Fig. 5). At
various r-positions a good quantitative agreement is found between the experimental and
simulated standard deviations (o) of the dE, PDFs when LPF is applied (Fig. 3b).
Conclusion.

Summarizing, direct measurements of micro, meso, and macro-scale transport phenomena in
the FT-2 tokamak are shown to be quantitatively reproduced by global full-f nonlinear GK
simulation predictions with Elmfire code. A detailed agreement with mean equilibrium ExB
flows, oscillating meso-scale zonal flows and turbulence spectra observed by a set of
sophisticated microwave BS techniques as well as a good fit of the thermal diffusivity data are

demonstrated. A clear influence of the impurity ions on the fluctuating E, is observed.
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