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ABSTRACT: The simplest symplectic map that has the generic topology of the divertor
tokamaks is the simple map [1]. The generating function for the simple map and the
symplectic map equations can be transformed to natural canonical coordinates (i,0,¢) [2]
through a canonical transformation. y is toroidal flux,  is poloidal angle, and ¢ is toroidal
angle. The natural canonical coordinates are invertible to real physical space [3]. The simple
map in natural canonical coordinates is then integrated to calculate the symplectic homoclinic
tangles of the ideal separatrix under the influence of qualitatively different kinds of magnetic
perturbations, and the tangles are inverted to the real physical space. Ideal separatrix is a
degenerate manifold and is the most sensitive to asymmetries. Symplectic homoclinic tangles
of the ideal separatrix from different kinds of perturbations, phase differences, and amplitudes
are calculated. For some perturbations, the tangles have very pronounced lobes. Implication of
these results for physics of edge plasmas is discussed. This work is supported by the US DOE
grants DE-FG02-01ER54624 and DE-FG02-04ER54793. This research used resources of the
NERSC, supported by the Office of Science, US DOE, under contract DE-AC02-05CH11231.

The simple map [1] is the simplest symplectic map that has the magnetic topology of
divertor tokamaks. The simple map is a very valuable construct to study the generic
topological effects of magnetic perturbations on the trajectories of magnetic field lines in
divertor tokamaks. The simple map preserves the topological invariance of the Hamiltonian
system. The equilibrium generating function of the simple map in canonical representations
have the simplest mathematical expressions. There are three canonical representations for the
simple map: the physical, natural, and the action-angle [2]. Of these three canonical
representations, the natural coordinates are the most useful [2] because the natural coordinates
are invertible to real physical space [3] and it is easy to add doubly periodic sinusoidal
magnetic perturbations. Field line trajectories can be integrated across the separatrix surface
which cannot be done in magnetic coordinates. In this paper, we calculate the symplectic

homoclinic tangles of the ideal separatrix manifold of the simple map from qualitatively
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different kinds of magnetic perturbations and give the effects of these tangles on the tokamak

plasmas.

In  the natural canonical coordinates the magnetic field is
B=VyxVO+VoxVy(w,0,0). 0 is the poloidal angle, and it is the canonical position; i is
the toroidal magnetic flux inside the magnetic surface, and it is the canonical momentum; ¢ is
the toroidal angle, and it plays the role of canonical time; y is the poloidal flux, and it plays

the role of the Hamiltonian for the trajectories of field lines. The equilibrium generating
function is y, (1//,6)=1//—(2\/2/ 3)1,//% sin’(8). The natural coordinates are inverted to

physical coordinates using the canonical transformation x=\/(2l///Bo)cos(9) and
y=\(2y/Bo)sin(#) with By an arbitrary magnetic field. We take By=1 Tesla. The physical
coordinates (x,y) are connected to cylindrical coordinates (R,Z) by R=Rytx, and Z=Zyty.
(Ro,Zy) is the location of magnetic axis. The equilibrium surfaces can be calculated
analytically. y=0 gives the magnetic axis; 0<y<1/6 gives closed surfaces and the surfaces in
the private flux region; y=1/6 gives the separatrix surface; and y>1/6 gives the open surfaces.

The equilibrium magnetic surfaces are shown in Fig. 1. The symplectic map equations are
WnH = l//n _k[aZ(Wi1+l7 6n7¢n )/aan :| 2 and 6n+1 = en + k|:a/1/(lr//n+l 79n7¢n )/a l//n+l:| : k is the map

parameter, and it is the step size of symplectic integration. We take k=2m/360. Here

x(v.0,0)=12,(v.0)+ x,(w.0,4). x1 is the magnetic perturbation. The perturbation is

expressed as sum of Fourier modes g, (1//,49,¢) = Z mn)5mn cos(mf—ng+39,,). m and n are

(

the poloidal and toroidal mode numbers, 4, are the phases, and J,, are the amplitudes. The
map equations are for forward advance(v,.6,.4,) > (¥,..0,..4,.,). In this case, if the
radial dependence of the amplitudes is ignored, the first map equation for y reduces to a third

degree polynomial in \(,+;) and then it is possible to solve it analytically; the second

equation in 6,+; is explicit and so solved readily. For the backward map

(¥1150,.1-8,.,) > (v,,6,.9,) , the map equation for 6, is implicit, and the map equation for

Wy is explicit. Here we will seto, () =0, ignoring the radial dependence of Fourier modes.

mn

The X-point (6=n/2,y=1/2) is a hyperbolic saddle point, and the unperturbed
separatrix surface is a degenerate manifold M where the stable and unstable manifolds, S
and MY, coincide. Magnetic perturbation breaks the degeneracy of M and splits it into S

and MU as M is advanced forward and backward in canonical time under the influence of the
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symmetry breaking perturbation, forming the homoclinic tangles in the principal plane of
tokamak. Here we calculate homoclinic tangles for two kinds of perturbations: the topological
noise and field errors with locked modes (3,1) + (4,1) + (6,2) + (7,2) + (8,2) + (9,3) + (10,3) +
(11,3) + (12,3) with common amplitude dnoise = 2X107°, and the type I ELM represented by
the locked peeling-ballooning modes (30,10) + (40,10) with amplitude dgy = 107, We
calculate the symplectic homoclinic tangles of the ideal separatrix of the simple map. We
advance 2X10° points on this surface a single toroidal circuit forward and backward. The

results are shown in Figs. 2 and 3.

The edge plasma in divertor tokamaks plays the critical role in the L to H mode
transition [4-8]. Homoclinic tangles cause large distortions of magnetic topology of the
tokamak near the X-point. Lobes near the X-point in the MAST tokamak that may be caused
by tangles are seen experimentally [9]. To our knowledge, we are the first to symplectically
calculate these tangles in physical space. Large distortions of magnetic topology can have
important consequences on the plasma confinement. Some of the possibilities are that the
radial displacement of mobile passing electrons on tangles can create radial electric fields and
currents giving a poloidal EXB plasma flow [4-8], and the resulting jXB force may give the
spin-up of plasma that may contribute to L. to H mode transition [4-8]. Work has application
beyond tokamaks since the approach is general and generic for 1’2 degree of Hamiltonian

systems, and therefore can be of value to nonlinear dynamics of Hamiltonian systems.
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Fig. 1. The equilibrium magnetic geometry of the Fig. 2a. Homoclinic tangles of the ideal separatrix
simple map. of the simple map for the topological noise and field

€1rors.
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Fig. 2b. An enlarged view of Fig. 2a. Fig. 3a. Fig. 2a. Homoclinic tangles of the ideal
separatrix of the simple map for the peeling-
ballooning mode for type I ELM.
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Fig. 3b. An enlarged view of Fig. 3a. Fig. 3c. An enlarged view of Fig. 3b.
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