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ABSTRACT: The simplest symplectic map that has the generic topology of the divertor 

tokamaks is the simple map [1]. The generating function for the simple map and the 

symplectic map equations can be transformed to natural canonical coordinates (ψ,θ,φ) [2] 

through a canonical transformation. ψ is  toroidal flux, θ is poloidal angle, and φ is toroidal 

angle. The natural canonical coordinates are invertible to real physical space [3]. The simple 

map in natural canonical coordinates is then integrated to calculate the symplectic homoclinic 

tangles of the ideal separatrix under the influence of qualitatively different kinds of magnetic 

perturbations, and the tangles are inverted to the real physical space. Ideal separatrix is a 

degenerate manifold and is the most sensitive to asymmetries. Symplectic homoclinic tangles 

of the ideal separatrix from different kinds of perturbations, phase differences, and amplitudes 

are calculated. For some perturbations, the tangles have very pronounced lobes. Implication of 

these results for physics of edge plasmas is discussed. This work is supported by the US DOE 

grants DE-FG02-01ER54624 and DE-FG02-04ER54793. This research used resources of the 

NERSC, supported by the Office of Science, US DOE, under contract DE-AC02-05CH11231. 

 The simple map [1] is the simplest symplectic map that has the magnetic topology of 

divertor tokamaks. The simple map is a very valuable construct to study the generic 

topological effects of magnetic perturbations on the trajectories of magnetic field lines in 

divertor tokamaks. The simple map preserves the topological invariance of the Hamiltonian 

system. The equilibrium generating function of the simple map in canonical representations 

have the simplest mathematical expressions. There are three canonical representations for the 

simple map: the physical, natural, and the action-angle [2]. Of these three canonical 

representations, the natural coordinates are the most useful [2] because the natural coordinates 

are invertible to real physical space [3] and it is easy to add doubly periodic sinusoidal 

magnetic perturbations. Field line trajectories can be integrated across the separatrix surface 

which cannot be done in magnetic coordinates. In this paper, we calculate the symplectic 

homoclinic tangles of the ideal separatrix manifold of the simple map from qualitatively 

39th EPS Conference & 16th Int. Congress on Plasma Physics P4.007



different kinds of magnetic perturbations and give the effects of these tangles on the tokamak 

plasmas. 

 In the natural canonical coordinates the magnetic field is

( , , )         B= + . θ is the poloidal angle, and it is the canonical position; ψ is 

the toroidal magnetic flux inside the magnetic surface, and it is the canonical momentum; ϕ is 

the toroidal angle, and it plays the role of canonical time; χ is the poloidal flux, and it plays 

the role of the Hamiltonian for the trajectories of field lines. The equilibrium generating 

function is     3 32, 2 2 / 3 sin ( )      0 . The natural coordinates are inverted to 

physical coordinates using the canonical transformation x=√(2ψ/B0)cos(θ) and 

y=√(2ψ/B0)sin(θ) with B0 an arbitrary magnetic field. We take B0=1 Tesla. The physical 

coordinates (x,y) are connected to cylindrical coordinates (R,Z) by R=R0+x, and Z=Z0+y. 

(R0,Z0) is the location of magnetic axis. The equilibrium surfaces can be calculated 

analytically. χ=0 gives the magnetic axis; 0<χ<1/6 gives closed surfaces and the surfaces in 

the private flux region; χ=1/6 gives the separatrix surface; and χ>1/6 gives the open surfaces. 

The equilibrium magnetic surfaces are shown in Fig. 1. The symplectic map equations are 

 1 1, ,n n n n n nk             , and  1 1 1, ,n n n n n nk              . k is the map 

parameter, and it is the step size of symplectic integration. We take k=2π/360. Here 

     0 1, , , , ,            . χ1 is the magnetic perturbation.  The perturbation is 

expressed as sum of Fourier modes  1 ( , )
, , cos( )mn mnm n

m n          . m and n are 

the poloidal and toroidal mode numbers, ϑmn are the phases, and δmn are the amplitudes. The 

map equations are for forward advance    1 1 1, , , ,n n n n n n        . In this case, if the 

radial dependence of the amplitudes is ignored, the first map equation for ψ reduces to a third 

degree polynomial in √(ψn+1) and then it is possible to solve it analytically; the second 

equation in θn+1 is explicit and so solved readily. For the backward map 

   1 1 1, , , ,n n n n n n         , the map equation for θn is implicit, and the map equation for 

ψn is explicit. Here we will set ( )mn   , ignoring the radial dependence of Fourier modes.  

 The X-point (θ=π/2,ψ=1/2) is a hyperbolic saddle point, and the unperturbed 

separatrix surface is a degenerate manifold M where the stable and unstable manifolds, MS 

and MU, coincide. Magnetic perturbation breaks the degeneracy of M and splits it into MS 

and MU as M is advanced forward and backward in canonical time under the influence of the 
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symmetry breaking perturbation, forming the homoclinic tangles in the principal plane of 

tokamak. Here we calculate homoclinic tangles for two kinds of perturbations: the topological 

noise and field errors with locked modes (3,1) + (4,1) + (6,2) + (7,2) + (8,2) + (9,3) + (10,3) + 

(11,3) + (12,3) with common amplitude δNOISE = 2X10-5, and the type I ELM represented by 

the locked peeling-ballooning modes (30,10) + (40,10) with amplitude δELM = 10-4. We 

calculate the symplectic homoclinic tangles of the ideal separatrix of the simple map. We 

advance 2X105 points on this surface a single toroidal circuit forward and backward. The 

results are shown in Figs. 2 and 3. 

 The edge plasma in divertor tokamaks plays the critical role in the L to H mode 

transition [4-8]. Homoclinic tangles cause large distortions of magnetic topology of the 

tokamak near the X-point. Lobes near the X-point in the MAST tokamak that may be caused 

by tangles are seen experimentally [9]. To our knowledge, we are the first to symplectically 

calculate these tangles in physical space. Large distortions of magnetic topology can have 

important consequences on the plasma confinement. Some of the possibilities are that the 

radial displacement of mobile passing electrons on tangles can create radial electric fields and 

currents giving a poloidal EXB plasma flow [4-8], and the resulting  jrXB force may give the 

spin-up of plasma that may contribute to L to H mode transition [4-8]. Work has application 

beyond tokamaks since the approach is general and generic for 1½ degree of Hamiltonian 

systems, and therefore can be of value to nonlinear dynamics of Hamiltonian systems. 

Fig. 1. The equilibrium magnetic geometry of the 

simple map. 

Fig. 2a. Homoclinic tangles of the ideal separatrix 

of the simple map for the topological noise and field 

errors. 
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Fig. 2b. An enlarged view of Fig. 2a. Fig. 3a. Fig. 2a. Homoclinic tangles of the ideal 

separatrix of the simple map for the peeling-

ballooning mode for type I ELM. 

Fig. 3b. An enlarged view of Fig. 3a.  Fig. 3c. An enlarged view of Fig. 3b. 
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