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The reduction of turbulence by sheared flows is generally accepted as a key ingredient in

the formation of transport barriers, but the identification of the physical mechanisms that cre-

ate these sheared flows is still an open issue. Zonal flows are considered a possible catalyst

of the transition. Nevertheless, in non-quasisymmetric stellarators, the radial electric field Er

is basically determined by the neoclassical theory of collisional transport in magnetized plas-

mas. Therefore, the interaction between neoclassical and turbulent processes, and concretely

the extent to which turbulence can overcome the neoclassical viscosity and modify the E×B

rotation through momentum transport, has been the subject of recent works. Here, we contribute

to the above programme with the study of the so-called low density confinement transition (see

Ref. [1] and refs. therein) in the heliac TJ-II. The formation of the shear layer is described from

first principles in the framework of neoclassical theory and the turbulent phenomena that arise

in the neighborhood of the transition are shown to be regulated by neoclassical transport.

TJ-II undergoes a spontaneous confinement transition typically at a line-averaged electron

density ne=ncr≈0.6×1019 m−3. At this empirical critical density ncr, Er changes from positive

to negative and, at the same time, a transport barrier is generated close to the edge. The reversal

of Er starts where the density gradient is maximum and then propagates across the entire region

0.5<ρ <0.9 (ρ =r/a is the normalized radius) at a speed of the order of several m/s. Whereas

similar transport barriers, related to jumps between roots of the ambipolar equation, have been

observed in the low density regime of other stellarators, the very detailed study carried out

in TJ-II has revealed additional interesting phenomena during the transition. First of all, the

level of turbulence and the E×B flux are seen to increase prior to the transition, associated to

long-range-correlated (LRC) electrostatic potential structures that grow when approaching the

critical density [2]. The potential relaxation time in biasing turn-off experiments [3] peaks at

ncr, and so does the shear-flow susceptibility in electrode-biasing experiments [4].

In this work, we perform a dynamical neoclassical calculation of the formation of the sheared

Er. We simulate the density ramp-up that leads to the transition and describe, from first prin-

ciples, the formation and evolution of the shear flow in good agreement with the experiment.

Furthermore, we show for the first time that the behaviour of the three quantities discussed

above (amplitude of low-frequency LRCed potential fluctuations, potential relaxation time and
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shear-flow susceptibility) appear here as natural consequences of the expected neoclassical bi-

furcation. We start from the momentum balance equation summed over species:

mi
∂ (nu)

∂ t
+∇ ·Πi +∇ ·Πe = j×B , u = 2π

(
p′i(ψ)

ne
+φ ′(ψ)

)
eθ +Λ(ψ)B . (1)

Here, u is the (lowest order incompressible) ion flow tangent to flux surfaces, Πs is the viscosity

tensor, Πs = ms
∫

vv fs(x,v, t)d3v, or momentum flux of species s, fs its distribution function,

and j×B is the Lorentz force. We have assumed a quasineutral plasma consisting of singly

charged ions and electrons (ne =ni =n). Note that we have dropped the inertia since me� mi.

We work in Hamada magnetic coordinates (ψ,θ ,ξ ). The flux surface label ψ is the toroidal

magnetic flux and the prime stands for derivative. The first term on the RHS of Eq. (1) contains

the diamagnetic and E×B perpendicular flows (pi is the ion pressure, e the elementary charge,

φ is the electrostatic potential, and eθ ×B = (2π)−1∇ψ) together with the parallel Pfirsch-

Schlüter flow (∇ · eθ = 0 and 〈eθ ·B〉 = 0 for a currentless stellarator). The term ΛB is the ion

bootstrap flow. If we project Eq. (1) along eθ and take flux-surface-average 〈·〉 we obtain:

∂Er

∂ t
=

1
n

∂
∂ t

(
p′i(r)

e

)
−Er

1
n

∂n
∂ t

+
(ψ ′(r))2

4π2mn〈eθ · eθ 〉
(e(Γe−Γi)+ 〈j ·∇r〉) , (2)

where Er ≡ −φ ′(r) and the minor radius r is a geometric flux label defined in terms of the

volume V (r)≡ πr2Lax, where Lax is the length of the magnetic axis. We have obtained the

radial particle fluxes from Γs =− 2π
qsψ ′(r)〈eθ ·∇ ·Πs〉. The viscosity tensor can be split into

a neoclassical part, given by the gyrotropic pressure tensor, and an anomalous contribution

Πs = ΠNC
s +Πan

s = ps‖bb+ ps⊥ (I−bb)+Πan
s . As mentioned, in non-quasisymmetric confin-

ing magnetic topologies, the leading order contribution to Eq. (2) is 〈eθ ·∇ ·ΠNC
s 〉, being much

larger than 〈eθ ·∇ ·Πan
s 〉, which will be thus neglected, together with the shear-flow viscosity.

We use the Drift Kinetic Equation Solver (DKES) to evaluate the pressure anisotropy in

the TJ-II magnetic field in the parameter range usually found experimentally in the vicinity

of the transition. Details of the calculation and convolution of the monoenergetic coefficients

may be found in Ref. [5] and references therein. From Eq. (2), the time-evolution of Er is

fully determined if we know, at every instant of time, the magnetic configuration bmn and the

profiles n, Te, Ti. Since we simulate a pure proton-electron plasma, the effective charge Ze f f

(which mainly affects collisionality) is set equal to one. We perform a numerical simulation

of a density ramp across the critical density for a plasma with profiles n(ρ, t), Te(ρ, t) and

Ti(ρ, t) that mimic the experimental ones, see Fig. 1 and Ref. [1]. We set 〈j ·∇r〉= 0 unless

otherwise stated. This is implied by quasineutrality (∇ · j = 0), but a net radial plasma current

can be induced in plasma biasing experiments. Note that although we assume that the leading
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non-ambipolar particle fluxes are neoclassical, we make no particular assumption on the total

particle or energy fluxes.

Fig. 2 shows the formation and precise evolution of the shear layer in TJ-II plasmas, in good

agreement with the experiment [1]. It starts to develop approximately where the gradient is

maximum and then propagates inwards and outwards: a speed of the order of 1m/s may be

extracted, determined by the evolution time of the local collisionality. This general behaviour

is expected for neoclassical simulations of TJ-II low-density plasmas. In Fig. 3, we show the

ambipolar equation at ρ = 0.7 for several times. Since we start from low collisionality, Er is

positive (t =10ms). As n is raised, a negative stable root appears (t =50ms and t =80ms), but

the two stable roots are separated by an unstable root, so Er stays positive. Only for n = ncr,

when the electron root disappears (t >90ms), the system jumps to negative Er. This picture is

only slightly modified by considering the measured turbulent momentum transport.

When the transition is approached from below, the non ambipolar neoclassical fluxes display

a weak dependence on Er around the ambipolar value and large Er excursions may be caused by

turbulent momentum fluxes or external forcing (biasing) as is observed experimentally. To make

the argument more precise we define a neoclassical poloidal viscosity as the linear coefficient of

the difference between the electron and ion radial fluxes expanded around the ambipolar electric

field, [Γe−Γi](Er)=−µp(Er−E0
r )+O((Er−E0

r )2). Eq. (2) then approximately yields:

∂Er

∂ t
≈ e(ψ ′)2

4π2mn〈eθ · eθ 〉

[
µp(Er−E0

r )− 〈j ·∇r〉
e

]
=−νp(Er−E0

r )+ ǰr . (3)

The coefficient µp can be calculated directly from the data of Fig. 3, and we have absorbed n,

m, e, ψ ′, 〈eθ · eθ 〉, and constants into νp and ǰr. The dependence of νp on n during the transition

is shown in Fig. 4: it is smaller before the transition than after it and, more importantly, goes to

zero when approaching ncr from n<ncr. We now show that the behaviour of the neoclassical

viscosity provides a simple, unified explanation of the observed phenomena that accompany

the transition. The characteristic relaxation time in biasing turn-off experiments (ν−1
p in Eq. 3)

shows a peak around the critical density and decreases for larger density plasmas in the ion root

[3]. This is reproduced by the curve shown in Fig. 4. Similarly, when a low frequency external

biasing is applied, the response Er is in phase with the biasing and its amplitude increases close

to ncr [4]. This is to be expected from Eq. 3, for in that case Er(t) ≈ E0
r + ν−1

p ǰr(t). Finally, to

better discuss the observations of LRCs close to the transition [2] we Fourier transform Eq. (3):

iωÊr(ω) =−νpÊr(ω)+ ĵ(ω)⇒ |Êr(ω)|2 =
1

ν2
p +ω2 | ĵ(ω)|2 ≡ A(ω)| ĵ(ω)|2 , (4)

for time scales faster than that of the density ramp, i.e., ω > ∂t log(E0
r )∼ ∂t log(n)∼ 10Hz.
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Within this simplified framework, Eq. 4 shows that the amplitude of the fluctuations Êr(ω)

driven by a given broadband turbulent forcing ĵ(ω) is modulated by the NC viscosity, which

damps fluctuations of frequencies lower than νp. Below and above the transition (Fig. 4 inset),

the fluctuations Êr(ω) with ω < 10kHz are neoclassically damped. It is only close below ncr

that νp drops, leaving the low frequency Er fluctuations (which display higher LRC) undamped.
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Fig. 1: Plasma profiles: low (high) n in

open (closed) circles.
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Fig. 2: Er-profile for representative times.
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Fig. 3: Ambipolar equation at ρ =0.7.
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Fig. 4: νp vs. n/ncr during the transition

(inset: ω-dependence of the NC damping).
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