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This work examines the role of the particular state consisting of large (virtually infinite)

values of the effective Larmor radius parameter ρe f f = ρs (1− v∗i/u)−1/2 on the saturation of

the H-mode structure and the possible limitation to the confinement.

One can broadly identify two phases of the periodic events within the stationary confinement

in tokamak. The first consists of the formation of the layer of sheared poloidal rotation, charac-

teristic to the H-mode. The onset of poloidal rotation is a fast transition consisting of collection

and condensation of angular momentum carried by drift waves. The second phase refers to the

progressive onset of a particular saturation regime of this rotation, inducing weaker stability

against vortex nucleation and filamentation, with loss of H-mode confinement. This sequence is

repeated and, in the absence of external action (like the RMP) it establishes a limiting regime,

a kind of thermodynamical barrier that may be not favorable for reactors. The sheared poloidal

rotation ( a vorticity sheet near the last closed magnetic surface) suppresses the transport and

induces formation of the pedestal with strong gradient of the pressure [1]. Then the ion dia-

magnetic velocity vi∗ increases and approaches the plasma poloidal velocity u. The dynamics

rely on a parameter ρe f f = ρs (1− vi∗/u)−1/2 that tends to infinity, which means suppression of

the Ertel ’s theorem or equivalently decoupling of density and vorticity (on meso- and macro-

scopic scales). The layer of vorticity becomes unstable and breakes-up by nucleating a periodic

array of vortices (filaments). This second phase appears as a principial obstacle in maintaining

H-confinement since the increase of ρe f f is unavoidable.

Although the present work is mainly concerned with the second phase we include a discussion

of the first (build-up of the rotation layer).

It is usually assumed that plasma rotation is due to three concurent mechanisms: direct ion

loss, Reynolds stress due to drift instabilities, Stringer spin-up induced by asymmetries of the

transport rate. We can mention two others. (a) the high convective transport rate ( due to strong

radial gradients of temperature) spontaneously transform the tilting of the drift wave eddies into

ordered flow oriented transversally on the direction of convection: this corresponds to the well-

known second bifurcation of the Rayleigh-Benard system, with the "wind" parallel to the plates
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corresponding to our H-mode rotation layer. (b) a distinct mechanism consists of continuous and

exponentially accelerating process of collection of the angular momentum carried by drift wave

structures and its condensation into the vorticity sheet.

We ennumerate the steps which we take in constructing the argument regarding the formation

and the suppression of the rotation layer in H-mode.

(1) It is assumed that the outer region of plasma (large minor radius) is dominated by drift-

type instabilities.

(2) These instabilities can generate relatively stable structures which are vortices. We estimate

the average density of the presence of such strong vortices. First we assume that turbulence is

dominately two-dimensional and that we can neglect the stretching of vortices along toroidal

direction (i.e. we assume small ρs compared to the scale of flow). This amounts to reduce the

description of vortices to the Euler fluid model, instead of Hasegawa-Mima. A field-theoretical

formulation of the Euler fluid reveals the connection between the distribution of vorticity and

the intrinsic geometry of a surface in 3D space, which evolves to the state of Constant Mean

Curvature, and relates the physical variables of the fluid to the two principal curvatures of the

surface. A strongly localised (quasi-singular) vortex corresponds, in this mapping, to points on

the surface where the two curvatures are approximately equal. The exact equality defines the

so-called umbilic points. The statistical properties of umbilic points have been calculated for a

Gaussian random surface in 3D [2] and we map it back into the statistics of strong vortices in

turbulence. It results an average of ≈ 3 vortices on a surface of eddy size.

(3) Due to the gradient of the background vorticity the strong, isolated vortices are migrat-

ing towards the maximum or the minimum of the vorticity, a process which transports angular

momentum in a very localized form. The mechanism is described by Schecter and Dubin [3].

At the base it is the mixing of the vorticity of the background gradient in the region just around

the clump or the hole of the isolated vortex of positive or negatice circulation. This modifies

one of the contributions to the canonical momentum Pθ and, since this one is conserved, other

component must compensate. In consequence the positive-circulation vortex (clump of vortic-

ity) moves against the gradient, i.e. toward the maximum of the vorticity sheet. The negative-

circulation vortex (hole) has the opposite behavior.

(4) Arriving at the layer of initial poloidal rotation, the vortices are melting into the rotating

layer, contributing to the angular momentum and sustaining the rotation. This process is the

inverse of the generation of isolated vortices in a Bose-Einstein (BE) condensate. When the

BE condensate is rotated and the angular momentum exceeds a threshold a vortex is generated

[4]. Here we invoke the reverse process, with isolated vortices coalescing and building-up or
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enhancing a rotation flow. Absent in the case of the BE condensate, this hypothesis is reasonable

here due to the process of separation of vortices (clumps or holes) on a background of gradient of

vorticity. We can see this mechanism as a sort of discrete-events Reynold stress, but substantially

enhanced by the self-induced motion of the vortices. The model is the Kardar-Parisi-Zhang

equation but in k-space.

(5) The collection of angular momentum is equivalent to an instability of increasing the rota-

tion in the layer. This is because any "quantum" of vorticity contributed by a vortex joining the

vorticity sheet will increase the gradient of the background vorticity, enhancing the migration

of other vortices. The velocities of the individual vortices ascending the gradient of vorticity are

determined in relation with their positions with respect to the maximum of the vorticity.

(6) The poloidal rotation suppresses the drift instabilities and reduces the transport accross

the layer and leads to the formation of the pedestal, increasing the gradient of the pressure.

(7) The gradient of the pressure increases the diamagnetic velocity of the ions.

(8) When the relative magnitudes of the ion diamagnetic velocity vi∗ and the poloidal rotation

velocity u are equal, the effective Larmor radius becomes infinite. To see the consequences, we

note that the increase in magnitude and shear of the poloidal velocity is due to the radial polar-

ization current, equivalently, it is made possible by the compressibility of the ion polarization

velocity divVi,pol �= 0.
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When ρe f f → ∞ the divergence of the ion polarization velocity is suppressed, the left hand

side is zero and the equation becomes the Euler equation, with no intrinsic length (conformal

invariant). The variables n ∼ φ and ω = ∇2
⊥φ are decoupled.

(9) The H-mode rotation layer (which is a vorticity sheet) is robust because of the strong shear

of the poloidal rotation. An instability of drift-type has an eigenfunction which is shifted relative

to the resonance surface. This implies enhanced magnetic shear damping via nonlinear coupling

of radial harmonics. According to Carreras et al [5] the equation for a density perturbation is

of the form
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where x is the radial coordinate, ωE = kyu, Δk is the modified width of the mode, S is normalized

shear flow frequency parameter and ξk is the shift on x induced by the sheared flow. We observe
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that for long wavelength perturbations (k2
yρ2

s 
 1) the propagator at zero-frequency ω ∼ 0 of

the operator in the left hand side becomes singular as ρe f f → ∞, since
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This means that the dynamics is algebraic (not exponential) and no eigenemode can be defined.

The mechanism that protects the layer against the instabilities is operational until ρe f f remains

finite,while at high values of ρe f f the zero frequency (algebraic) and long poloidal deformations

destabilises the layer.

(10) When ρe f f → ∞ the layer is unstable to breaking-up into vortices that look as filaments.

Indeed it has been shown [6] that the vorticity layer, which is also a layer of high local values

of the current density is torn apart by a Chaplygin-type (anomalous polytropic) instability. At

that moment the equation looks like the Flierl-Petviashvili equation Δφ =−k
2
0φ +γφ3 since the

term with φ 2, is zero due to d
(
vdia

i

)
/dr = 0. The coefficient in the first term is k
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6u3 . The solution is [7]
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where sn is the Jacobi elliptic function with real elliptic parameter 0 ≤ ν ≤ 1 and is determined

from (1+ν)
(

2m
1+

√
ν

)2
≡ k

2
0

γ/2 . Since the elliptic function sn is a series of kinks (tanh) the solution

is a succession of radial positive and negative velocities which create a sequence of periodic

filaments distributed equidistant along the poloidal circumference.
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