39" EPS Conference & 16" Int. Congress on Plasma Physics P4.017

A natural bound to the stability of the boundary layer
in the H-mode regime

Florin Spineanu and Madalina Vlad

Association EURATOM-MEdC Romania
National Institute of Laser, Plasma and Radiation Physics
Bucharest, Romania

This work examines the role of the particular state consisting of large (virtualy infinite)

~1/2 5n the saturation of

values of the effective Larmor radius parameter per = ps(1— Vii/u)
the H-mode structure and the possible limitation to the confinement.
One can broadly identify two phases of the periodic events within the stationary confinement
in tokamak. The first consists of the formation of the layer of sheared poloidal rotation, charac-
teristic to the H-mode. The onset of poloidal rotation is afast transition consisting of collection
and condensation of angular momentum carried by drift waves. The second phase refers to the
progressive onset of a particular saturation regime of this rotation, inducing weaker stability
against vortex nucleation and filamentation, with loss of H-mode confinement. This sequenceis
repeated and, in the absence of external action (like the RMP) it establishes a limiting regime,
akind of thermodynamical barrier that may be not favorable for reactors. The sheared poloidal
rotation ( a vorticity sheet near the last closed magnetic surface) suppresses the transport and
induces formation of the pedestal with strong gradient of the pressure [1]. Then the ion dia
magnetic velocity Vi, increases and approaches the plasma poloidal velocity u. The dynamics

rely on aparameter pet = ps(1— Vi, /U)~Y/2

that tends to infinity, which means suppression of
the Ertel ’s theorem or equivalently decoupling of density and vorticity (on meso- and macro-
scopic scales). The layer of vorticity becomes unstable and breakes-up by nucleating a periodic
array of vortices (filaments). This second phase appears as a principial obstacle in maintaining
H-confinement since the increase of pes+ IS unavoidable.

Although the present work is mainly concerned with the second phase weinclude adiscussion
of thefirst (build-up of the rotation layer).

It is usually assumed that plasma rotation is due to three concurent mechanisms: direct ion
loss, Reynolds stress due to drift instabilities, Stringer spin-up induced by asymmetries of the
transport rate. We can mention two others. (a) the high convective transport rate ( due to strong
radial gradients of temperature) spontaneously transform thetilting of the drift wave eddiesinto
ordered flow oriented transversally on the direction of convection: this corresponds to the well-

known second bifurcation of the Rayleigh-Benard system, with the "wind" parallel to the plates
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corresponding to our H-mode rotation layer. (b) adistinct mechanism consists of continuousand
exponentially accelerating process of collection of the angular momentum carried by drift wave
structures and its condensation into the vorticity sheet.

We ennumerate the steps which we take in constructing the argument regarding the formation
and the suppression of the rotation layer in H-mode.

(1) It is assumed that the outer region of plasma (large minor radius) is dominated by drift-
type instabilities.

(2) Theseinstabilitiescan generate rel atively stable structureswhich are vortices. We estimate
the average density of the presence of such strong vortices. First we assume that turbulence is
dominately two-dimensional and that we can neglect the stretching of vortices along toroidal
direction (i.e. we assume small ps compared to the scale of flow). This amounts to reduce the
description of vortices to the Euler fluid model, instead of Hasegawa-Mima. A field-theoretical
formulation of the Euler fluid reveals the connection between the distribution of vorticity and
the intrinsic geometry of a surface in 3D space, which evolves to the state of Constant Mean
Curvature, and relates the physical variables of the fluid to the two principa curvatures of the
surface. A strongly localised (quasi-singular) vortex corresponds, in this mapping, to points on
the surface where the two curvatures are approximately equal. The exact equality defines the
so-called umbilic points. The statistical properties of umbilic points have been calculated for a
Gaussian random surface in 3D [2] and we map it back into the statistics of strong vortices in
turbulence. It results an average of ~ 3 vortices on a surface of eddy size.

(3) Due to the gradient of the background vorticity the strong, isolated vortices are migrat-
ing towards the maximum or the minimum of the vorticity, a process which transports angular
momentum in a very localized form. The mechanism is described by Schecter and Dubin [3].
At the base it is the mixing of the vorticity of the background gradient in the region just around
the clump or the hole of the isolated vortex of positive or negatice circulation. This modifies
one of the contributions to the canonical momentum Pg and, since this one is conserved, other
component must compensate. In consequence the positive-circulation vortex (clump of vortic-
ity) moves against the gradient, i.e. toward the maximum of the vorticity sheet. The negative-
circulation vortex (hole) has the opposite behavior.

(4) Arriving at the layer of initial poloidal rotation, the vortices are melting into the rotating
layer, contributing to the angular momentum and sustaining the rotation. This process is the
inverse of the generation of isolated vortices in a Bose-Einstein (BE) condensate. When the
BE condensate is rotated and the angular momentum exceeds a threshold a vortex is generated

[4]. Here we invoke the reverse process, with isolated vortices coalescing and building-up or
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enhancing arotation flow. Absent in the case of the BE condensate, this hypothesisisreasonable
here dueto the process of separation of vortices (clumpsor holes) on abackground of gradient of
vorticity. We can see thismechanism asasort of discrete-events Reynold stress, but substantially
enhanced by the self-induced motion of the vortices. The model is the Kardar-Parisi-Zhang
equation but in k-space.

(5) The collection of angular momentum is equivalent to an instability of increasing the rota-
tioninthelayer. Thisisbecause any "quantum" of vorticity contributed by avortex joining the
vorticity sheet will increase the gradient of the background vorticity, enhancing the migration
of other vortices. The velocities of theindividual vortices ascending the gradient of vorticity are
determined in relation with their positions with respect to the maximum of the vorticity.

(6) The poloidal rotation suppresses the drift instabilities and reduces the transport accross
the layer and leads to the formation of the pedestal, increasing the gradient of the pressure.

(7) The gradient of the pressure increases the diamagnetic velocity of theions.

(8) When the relative magnitudes of the ion diamagnetic velocity v;, and the poloidal rotation
velocity u are equal, the effective Larmor radius becomes infinite. To see the consequences, we
note that the increase in magnitude and shear of the poloidal velocity is due to the radial polar-
ization current, equivalently, it is made possible by the compressibility of the ion polarization
velocity diwWj po # O.

ul Vix

—Fma (1—U>VEX+VJ_'V:0

whereVex = (—V¢ X&) |x, Y =y — ut and the equation for the potential is
2
When peit — oo the divergence of the ion polarization velocity is suppressed, the left hand
side is zero and the equation becomes the Euler equation, with no intrinsic length (conformal
invariant). The variablesn ~ ¢ and ® = V4 ¢ are decoupled.
(9) TheH-moderotation layer (whichisavorticity sheet) isrobust because of the strong shear
of the poloidal rotation. Aninstability of drift-type has an eigenfunction which is shifted relative
to the resonance surface. Thisimplies enhanced magnetic shear damping vianonlinear coupling

of radial harmonics. According to Carreras et al [5] the equation for a density perturbation is

of the form
%N 1 22 e \. [ Doki AZS\_ .1 o
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wherex istheradial coordinate, weg = kyu, Ay isthe modified width of the mode, Sisnormalized

shear flow frequency parameter and & isthe shift on x induced by the sheared flow. We observe
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that for long wavelength perturbations (k§p§ < 1) the propagator at zero-frequency @ ~ 0 of
the operator in the left hand side becomes singular as pest — oo, Since

1 2 2 (e ) 1( V*e> 1
= (14K2p2- ~ = (1-Ye) - - o
PS( P W — O pé | PStt

This means that the dynamicsis algebraic (not exponential) and no eigenemode can be defined.

The mechanism that protects the layer against the instabilitiesis operational until pefs remains
finite while at high values of pef ¢ the zero frequency (algebraic) and long poloidal deformations
destabilisesthe layer.

(10) When pet — oo the layer is unstable to breaking-up into vortices that look as filaments.
Indeed it has been shown [6] that the vorticity layer, which is al'so alayer of high local values
of the current density is torn apart by a Chaplygin-type (anomalous polytropic) instability. At
that moment the equation looks like the Flierl-Petviashvili equation A¢ = —R§¢ + 1¢3 sincethe

termwith ¢2, is zero dueto d (v12) /dr = 0. The coefficient in thefirst term iskg = ¢ ~1>0
2, dia
andy= 258" 1 Thesolutionis[7]
2m 2m
oY) =R <1+ﬁy V)

where sn isthe Jacobi elliptic function with real eliptic parameter 0 < v < 1 and is determined

2 2
from (1+v) (Pf“\;v) = % Sincethedlliptic function snisaseriesof kinks (tanh) the solution

is a succession of radia positive and negative velocities which create a sequence of periodic

filaments distributed equidistant along the poloidal circumference.
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