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Introduction

Radial basis functions (RBF) have been used for solving elliptic problems [1,2]. We present an
application of them to solve fixed boundary tokamak equilibria. For the description of the
problem we follow the EU Integrated Tokamak Modelling Task Force (ITM-TF) conventions.

The equation to solve is:

ap aFdia

1 , _ .
ﬁA‘V:—Zﬂ(ﬂoR ﬁ"’FdiaW):ﬂOR](b 1)

2
Where A* is the usual Grad-Shafranov operator A* = Ri(li) + 2 , ¥ is the poloidal
OR \RJR 072
flux function, R and Z are cylindrical coordinates and p and Fy;, are two arbitrary functions
depending only on W. In the RBF approximation a function is approximated by a sum of radial

functions centred on N different nodes W(R,Z) = XN, w;p(r;,dy) , with r; =

\/(R —Rl-)2 + (Z — Z;)? where (R;,Z;) is the position of each node, and d, a scale length.
The Grad-Shafranov equation can be solved substituting the expansion of W in terms of radial
basis functions in equation (1). In order to calculate the N weights w; we need to solve N
algebraic equations. Some points are chosen in the integration domain, the points will be
divided in N, internal, where the GS equation is imposed and N,,,,q boundary points
(Nint + Npouna = N), where the boundary condition ( W(%; pouna) = 0) is valid, generally the
chosen points are coincident with the nodes. So we have N;,,; equations:
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and Npoung €quations YN, w; (75, doy) = 0. The problem then reduces to solving a system of
equation for the unknown weights: Aw = b. Generally the matrix A is not sparse and it can
also become more ill conditioned when increasing d,, which generally increase the precision

of the solution. Methods to overcome the ill conditioning of the matrix have been developed [3]
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they will be tested in a future work.

The widely used radial basis function is ¢ (r,d,) = /Z—z+ 1 has been adopted. The node
0

positions has been chosen using a principle of minimal energy, basically we minimize a global

exp(—ar; ;)
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The parameter [ is used in order to avoid a divergence for r; ; = 0 while the parameter a can

potential W =3, ; where 7;; = ||% — %;|| is the distance between two nodes.

be used to avoid long range interaction between

points and have a more uniform distribution. The 0.6F ‘a.= 250 T ‘a.= .00 ]
nodes on the boundary are kept fixed while only 0.4,:"..'.;'-:..'-_ e, :Z:'.'::.:.’::..:.: o
the internal nodes are free to move during the 0,2,:::_'.:.'._'.'.:.:.3-:. |
optimization. 2 oot
In general dp/d¥ (usually called p') and —0.2Fesi el st ettt
Faiq 0F3i0/0¥ (F4iqF};,) depend on W, so the ~0.4f 13 .'.-'.:',-'.'. ot Z::-::_.:-.:-.'-:" )
solution should be obtained by iterations. As it is -o6p T
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usual the problem is restated as: R (AU) R (AU)

L ey 2 op 0Faiq Fig. 1. Grid point positions obtained with different
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value of the parameter a. The total number of grid
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Where ¥, = q,*k is the normalized flux points is 206. With 40 points on the boundary (red).
Mk

function at the previous step, and W, is the maximum of the flux function at the iteration Kk,

basically the factor needed to get a normalized flux function. The solution to the original

equation is then ¥ = W—
Ym

In a typical fixed boundary code additional constraints are imposed on the total current and the
poloidal beta, but in the present situation, where we compare our output to an already calculated
equilibrium, they are not needed as long as we use the correct p" and F;;,F’ ;4. The code has
been written in Python, which provides an extensive set of function for optimization and
graphics, and implemented on the ITM Gateway. The infrastructure there available permits an
easy and standard interface to the output of other equilibrium codes.

Soloveev solution

The code has been tested against the Soloveev solution [4], one possible parameterization of
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which is the following one where :_3; and Fy;, are constant and don't depend on W:
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Y(r,z) =¥, — D?(r2 —1r¢)? — > ((4n2u0 39 8D2> r? + 4m%Fy, d—qj“) z? (3)
In the equation D is an additional constant and ry, is the position of the magnetic axis. As the
right hand side of the equations (b) doesn't depend on W the solution converges in just one

iteration. Generally for larger d, the solution

improves up to the point where the ill 10°
conditioning prevents further increasing of the 1o
precision. We checked the solver against a i
Soloveev equilibrium with the following g 107 ¢
parameters: r, = 1.0m, pep' = 0.32 T/m?, i
FuFl. = 0057T , D=076Wh, W= 10|
0.32Wb ). In the following figures we 1o

calculated the maximum difference between

the calculated solution (¥, ) and the Fig. 2 Effect of the grid points distribution on the

reference solution (W¥,..5): precision of the solver. The continuous lines are the

AY = max(Wspp, — lpref)/ max q;ref maximum differences between the calculated and

) ) ) analytical one, while the dashed line is the root mean
Figure 2 illustrates the effect of different o
square deviation between the two.

position of the nodes on the precision of the

10° ‘ obtained solution. Not a big difference is seen
— N, =48 )
\ — N between the two cases, even though it not
— N 2
excluded that a better positioning of the points

can get a better precision.

The continuous lines refer to the maximum

deviation from the analytical one relative to the
maximum value of the ¥ while the dashed

102 101 one refers to the relative square root deviation.

dy/a A global scale factor close to one is still

Fig. 3 Effects of the number of point on the precision present. For large d, the sharp increase to the
of the solution. While there is an increase of precision deviation are likely due to the ill conditioning
from 48 grid points and 150 grid points, not much is of the matrix A. The Solovev solution can be
ained from going from 130 to 245 points. used to test the limits of this kind of solver, in
figure 3 it is shown the effect of different number of points as function of the parameter d,/a,
where a is the plasma minor radius. There is a limit on the precision of about ~1073, this limit

is obtained for dy/a ~0.3, and Ng,;q > 100.
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Comparison to FIXFREE

FIXFREE is a free boundary equilibrium code based on the expansion of the GS solution in

toroidal harmonic series [5]. The comparison has been performed within the ITM-TF

simulation framework, where standard inputs and outputs are defined. A solution of the GS

corresponding to an equilibrium of FAST [6] has been calculated by FIXFREE. We take from

the output the position of the boundary and the p* and FgiaF'sia. The RBF solver is then applied,
the resulting ¥ is then compared with the output of

10° ‘ . . : .
— N, =47 FixFree. As the right hand side of the GS equation
— sz _ %22 depends on the calculated value of the flux-function

the solution is obtained only after some iterations.
The iterations stopped when the weights w; change
less then 107 compared to the maximum value of
the weights. This is basically achieved in ~15
| iterations. The calculated solution by the RBF
10° 10™ solver agrees with the solution coming from

ol FIXFREE with a precision of the order of 1072,
Fig. 4 Comparison between this solver and this is obtained for a dy/a = 0.2 A slightly better
result is obtained with a grid of only 47 points, but
further investigations are necessary.

102

FixFree. As before 160 points gives the best

performance.
Conclusions

A fixed boundary equilibrium solver has been developed, based on a radial basis function
expansion of the flux-function. A precision of at least 10 has been obtained in the comparison
against a Soloveev solution, while an agreement of about 10 has been obtained against
FIXFREE code. Realization of the solver in Python language provides an extensive set of
function for optimization and graphics. The implementation inside the ITM-TF framework
permits the easy comparison of the results with other equilibrium solvers. This work is in
progress as well as determination of the precision limits of the code.
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