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Introduction 

Radial basis functions (RBF) have been used for solving elliptic problems [1,2]. We present an 

application of them to solve fixed boundary tokamak equilibria. For the description of the 

problem we follow the EU Integrated Tokamak Modelling Task Force (ITM-TF) conventions. 

The equation to solve is: 
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Where Δ∗ is the usual Grad-Shafranov operator Δ∗ ൌ ܴ డ
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 , Ψ is the poloidal 

flux function, ܴ and ܼ are cylindrical coordinates and ݌ and ܨௗ௜௔ are two arbitrary functions 

depending only on Ψ. In the RBF approximation a function is approximated by a sum of radial 

functions centred on N different nodes Ψሺܴ, ܼሻ ൌ 			∑ ,௜ݎ௜߶ሺݓ ݀଴ሻ
ே
௜ୀଵ , with ݎ௜ ൌ
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൅ ሺܼ െ ܼ௜ሻଶ where ሺܴ௜, ܼ௜ሻ is the position of each node, and ݀଴ a scale length. 

The Grad-Shafranov equation can be solved substituting the expansion of Ψ in terms of radial 

basis functions in equation (1).  In order to calculate the N weights ݓ௜ we need to solve N 

algebraic equations. Some points are chosen in the integration domain, the points will be 

divided in ௜ܰ௡௧  internal, where the GS equation is imposed and ௕ܰ௢௨௡ௗ  boundary points 

( ௜ܰ௡௧ ൅ ௕ܰ௢௨௡ௗ ൌ ܰ), where the boundary condition (	Ψ൫ݔԦ௜,௕௢௨௡ௗ൯ ൌ 0) is valid, generally the 

chosen points are coincident with the nodes. So we have ௜ܰ௡௧ equations: 
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and ௕ܰ௢௨௡ௗ equations ∑ ,௝௜ݎ௜߶ሺݓ ݀଴ሻ
ே
௜ୀଵ ൌ 0. The problem then reduces to solving a system of 

equation for the unknown weights: ࢝࡭ ൌ  Generally the matrix A is not sparse and it can .࢈

also become more ill conditioned when increasing ݀଴, which generally increase the precision 

of the solution. Methods to overcome the ill conditioning of the matrix have been developed [3] 
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they will be tested in a future work.    

The widely used radial basis function is  ߶ሺݎ, ݀଴ሻ ൌ ට
௥మ

ௗబ
మ ൅ 1 has been adopted. The node 

positions has been chosen using a principle of minimal energy, basically we minimize a global 

potential  ܹ ൌ ∑
ୣ୶୮൫ିఈ௥೔,ೕ൯

ට௥೔,ೕ
మ ା௟మ

௜,௝   where ݎ௜,௝ ൌ ฮݔԦ௜ െ  .Ԧ௝ฮ is the distance between two nodesݔ

The parameter ݈ is used in order to avoid a divergence for ݎ௜,௝ ൌ 0 while the parameter ߙ can 

be used to avoid long range interaction between 

points and have a more uniform distribution. The 

nodes on the boundary are kept fixed while only 

the internal nodes are free to move during the 

optimization.  

In general ߲݌ ߲Ψ⁄  (usually called ݌′ ) and 

ௗ௜௔ܨ ௗ௜௔ܨ߲ ߲Ψ⁄ ௗ௜௔ܨௗ௜௔ܨ) 
ᇱ ) depend on Ψ, so the 

solution should be obtained by iterations. As it is 

usual the problem is restated as: 
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Where Ψഥ௞ ൌ
ஏౡ
∗

ஏಾೖ
∗  is the normalized flux 

function at the previous step, and Ψெ௞
∗  is the maximum of the flux function at the iteration k, 

basically the factor needed to get a normalized flux function. The solution to the original 

equation is then Ψ ൌ ஏ∗

ඥஏಾ
∗ .  

In a typical fixed boundary code additional constraints are imposed on the total current and the 

poloidal beta, but in the present situation, where we compare our output to an already calculated 

equilibrium, they are not needed as long as we use the correct ݌′ and ܨௗ௜௔ܨ′ௗ௜௔. The code has 

been written in Python, which provides an extensive set of function for optimization and 

graphics, and implemented on the ITM Gateway. The infrastructure there available permits an 

easy and standard interface to the output of other equilibrium codes. 

Soloveev solution 

The code has been tested against the Soloveev solution [4], one possible parameterization of 

which is the following one where 
డ௣

డஏ
 and ܨௗ௜௔

డி೏೔ೌ
ௗஏ

 are constant and don't depend on Ψ: 

Fig. 1. Grid point positions obtained with different 

value of the parameter . The total number of grid 

points is 206. With 40 points on the boundary (red). 
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In the equation ܦ is an additional constant and ݎ଴ is the position of the magnetic axis. As the 

right hand side of the equations (b) doesn't depend on Ψ the solution converges in just one 

iteration. Generally for larger ݀଴ the solution 

improves up to the point where the ill 

conditioning prevents further increasing of the 

precision. We checked the solver against a 

Soloveev equilibrium with the following 

parameters: ݎ଴ ൌ ᇱ݌଴ߤ ,݉	1.0 ൌ 0.32	 ܶ ݉ଶ⁄ , 

ௗ௜௔ܨௗ௜௔ܨ
ᇱ ൌ 0.057	ܶ ܦ , ൌ 0.76	ܹܾ , Ψ଴ ൌ

0.32	ܹܾ ). In the following figures we 

calculated the maximum difference between 

the calculated solution ( Ψ௦௢௟௩ ) and the 

reference solution (Ψ௥௘௙): 

ΔΨ ൌ maxሺΨ௦௢௟௩ െ Ψ௥௘௙ሻ/maxΨ௥௘௙ 

Figure 2 illustrates the effect of different 

position of the nodes on the precision of the 

obtained solution. Not a big difference is seen 

between the two cases, even though it not 

excluded that a better positioning of the points 

can get a better precision. 

The continuous lines refer to the maximum 

deviation from the analytical one relative to the 

maximum value of the Ψ  while the dashed 

one refers to the relative square root deviation. 

A global scale factor close to one is still 

present. For large ݀଴ the sharp increase to the 

deviation are likely due to the ill conditioning 

of the matrix A. The Solovev solution can be 

used to test the limits of this kind of solver, in 

figure 3 it is shown the effect of different number of points as function of the parameter ݀଴/ܽ, 

where a is the plasma minor radius. There is a limit on the precision of about ~10ିଷ, this limit 

is obtained for ݀଴ ܽ⁄ ~0.3, and ௚ܰ௥௜ௗ ൐ 100. 

Fig. 2 Effect of the grid points distribution on the 

precision of the solver. The continuous lines are the 

maximum differences between the calculated and 

analytical one, while the dashed line is the root mean 

square deviation between the two.  

Fig. 3 Effects of the number of point on the precision 

of the solution. While there is an increase of precision 

from 48 grid points and 150 grid points, not much is 

gained from going from 150 to 246 points.  
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Comparison to FIXFREE 

FIXFREE is a free boundary equilibrium code based on the expansion of the GS solution in 

toroidal harmonic series [5]. The comparison has been performed within the ITM-TF 

simulation framework, where standard inputs and outputs are defined. A solution of the GS 

corresponding to an equilibrium of FAST [6] has been calculated by FIXFREE. We take from 

the output the position of the boundary and the p' and FdiaF'dia. The RBF solver is then applied, 

the resulting Ψ is then compared with the output of 

FixFree. As the right hand side of the GS equation 

depends on the calculated value of the flux-function 

the solution is obtained only after some iterations. 

The iterations stopped when the weights ݓ௜ change 

less then 10ି଺ compared to the maximum value of 

the weights. This is basically achieved in ~15 

iterations. The calculated solution by the RBF 

solver agrees with the solution coming from 

FIXFREE with a precision of the order of 10ିଶ, 

this is obtained for a ݀଴ ܽ⁄ ൎ 0.2 A slightly better 

result is obtained with a grid of only 47 points, but 

further investigations are necessary. 
Conclusions 

A fixed boundary equilibrium solver has been developed, based on a radial basis function 

expansion of the flux-function. A precision of at least 10-3 has been obtained in the comparison 

against a Soloveev solution, while an agreement of about 10-2 has been obtained against 

FIXFREE code. Realization of the solver in Python language provides an extensive set of 

function for optimization and graphics. The implementation inside the ITM-TF framework 

permits the easy comparison of the results with other equilibrium solvers. This work is in 

progress as well as determination of the precision limits of the code. 
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Fig. 4 Comparison between this solver and 

FixFree. As before 160 points gives the best 

performance. 
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