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At the edge of a high-confinement mode (H-mode) plasma in present large tokamaks a narrow
region (pedestal) with large density and temperature gradients exists. The width of this region
and the scale length of the radial variations of density and temperature is of order of the poloidal
ion gyro radius [1], such that a basic scaling assumption of the standard neoclassical theory [2]
is violated. Furthermore, in the pedestal a strong electric field is present that varies on the
same length scale. A large gradient of the electric field can lead to squeezing or widening of
the banana orbits [3] which effects the neoclassical transport [4, 5]. Recently, a new theory
for these conditions was presented [6], which includes the effect of a strong electric field with
E,/B, =~ vy;. In both theories the large aspect ratio limit is assumed for obtaining analytical
expressions, neglecting terms of order /€.

Here, we study neoclassical physics in the plasma edge with guiding-centre particle simula-
tions, which intrinsically include the effects due to the deviation of the particle orbits from the
flux surfaces and thus capture possible effects of reduced or increased orbit size. For given ra-
dial profiles of density, temperature and electric potential the distribution functions of ions and
electrons are obtained. The delta-f code HAGIS [7] with a Monte Carlo model of Coulomb col-
lisions [8] is used. The deviation of the distribution function from a Maxwellian is represented
by marker particles, the motion of which is described by guiding-centre equations derived from
a Lagrangian. Pitch-angle scattering with the velocity dependent Coulomb collision frequency
is applied and a correction term is added to the particle weights to ensure momentum conser-
vation. In the calculations for the ions the ion-electron collisions can be neglected, since the
momentum loss caused by them is very small. For obtaining the bootstrap current, simulations
for the electrons are performed including the collisions with the ions, where the ion distribution
function is approximated by a shifted Maxwellian [8].

The large pressure gradient in the pedestal would cause a fast toroidal plasma rotation if it
was not balanced by a strong radial electric field just where the pressure gradient is large. This
electric field almost cancels the contribution of the pressure gradient to the toroidal velocity,

which usually has a minimum in the pedestal. Typically the pedestal plasma is in the banana-
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plateau transition or plateau regime (0.1 < v* < e 32, v =vqRy / £3/2pyi) and the trapped
particle fraction is f; ~ 0.7. Hence, the coefficient k; in the expression for the poloidal flow,
u, = —ki(RB:B,)/(e(B?))dT;/dvy, is small [9]. Here, ¥ is the poloidal flux, B, and B, are
toroidal and poloidal magnetic field and the angular brackets denote the flux surface average.
In Fig. 2 the numerical results for the parallel and poloidal velocities are shown for a case with
moderately steep profiles (case I, see Fig. 1, the evolution of n and T is also shown). Where the
gradients are large, the poloidal velocity differs from the standard theory ([9], for finite €) and a
corresponding deviation is seen in the parallel velocity. A large gradient of the electric field can
lead to squeezing or widening of the banana orbits, The ratio S = wy/w is S = 1 + a for large
aspect ratio with o = (RB;)2d*®/dy? /BQ ~ —Ppol(dE,/dr) /B,vi [3], where ppol = vini/€2p,
Vehi = \/T/m, and €, is the cyclotron frequency calculated with B),. The parameter o is the

second order coefficient in a local expansion of the electric potential,
eAD /Ty = —2(u/vini) (Ar/ppot) + & (Ar/ppot)* + ¥ (Ar/ppol)® +8 (Ar/ppo)* +... (1)

withu =E,/B,, Y = (vii/3)(RB,)3d*®/dy? /BQ? and & = (v2,;/12)(RB,)*d*®/dy*/BQ>.
At large aspect ratio orbit squeezing does not affect the parallel or poloidal velocity [4], but a
strong electric field does modify the poloidal velocity according to [6]. In case I this theory is

very close to the blue line in Fig. 2, since the parameter |u/vyy;| is rather small. In Fig. 3 u/vyy;
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Fig. 2: Parallel velocity (left) and poloidal velocity (centre) compared with (blue) theory [9].

Fig. 3 (right): u/vini = (E,/B))/vii and coefficients o, Y and 8 of electric potential, Eq.(1).
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is shown together with the coefficients o, ¥ and &. In Figs. 5-7 results for case II with larger
gradients are depicted, the density and temperature profiles and the electric field are shown
in Fig. 4. Here, the peak value of |u| is close to the thermal speed and |ot|max €xceeds unity
(Fig. 5a). The deviation of the poloidal velocity (Fig. 5b) from the theory [9] (new theory [6]
is shown by a dashed line) is much larger than in the first case, resulting in a sheared flow.
There is a corresponding change of the parallel velocity (Fig. 6), but the relative change is
smaller for the parallel ion current in the frame rotating with the velocity u = E, /B, (Fig. 7),
since |u| > <VH>Labframe holds around the peak of E,. This current affects the ion contribution
to the bootstrap current, which is shown in Fig. 8. In the case I the numerical result is close to
the standard theory, whereas in the case II with larger gradients there is a small deviation as a
consequence of the changed ion current shown in Fig. 7.

The radial heat flux is compared in Fig. 9 with the expressions from [5] (solid) with a fac-
tor (14 o)~3/2 and from [6] with a factor (1 + a)'/? multiplied by a function of (u/vy;)?
(dashed). Where orbits are squeezed (a0 > 0), the heat flux is closer to theory [5]. When E,

is large, energy scattering, which is neglected in the simulations, also contributes to scattering
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Fig. 5: top: Coefficients of electric potential, Eq. (1); bottom: poloidal velocity (red) compared with
theory (blue, solid: [9], dashed: [6]). Fig. 6: Parallel velocity (red) compared with theory [9] (blue).
Fig. 7: Parallel ion current (red) in the frame rotating with u = E,./ B,,. Blue: theory [9].
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Fig. 9: Heat flux
(red) in case I (a)
and in case II (b).
Blue: theory
(solid: [5],
dashed: [6]).
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Fig. 10: Region of trapped particles in phase
space at ryo1 = 0.97 in Fig. 9b (¢ = 0.3,
u/vthi = —0.4, o = 1.4).

Fig. 9b), the heat flux can be much larger than
that of Ref. [6], but is much smaller than that of
Ref. [5]. Here, the theory, based on the first two

terms in Eq. (1), is not valid, since a0 ~ —1.
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